A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Volitional Generation of Reproducible, Efficient Temporal Patterns. | LitMetric

Volitional Generation of Reproducible, Efficient Temporal Patterns.

Brain Sci

Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China.

Published: September 2022

One of the extraordinary characteristics of the biological brain is the low energy expense it requires to implement a variety of biological functions and intelligence as compared to the modern artificial intelligence (AI). Spike-based energy-efficient temporal codes have long been suggested as a contributor for the brain to run on low energy expense. Despite this code having been largely reported in the sensory cortex, whether this code can be implemented in other brain areas to serve broader functions and how it evolves throughout learning have remained unaddressed. In this study, we designed a novel brain-machine interface (BMI) paradigm. Two macaques could volitionally generate reproducible energy-efficient temporal patterns in the primary motor cortex (M1) by learning the BMI paradigm. Moreover, most neurons that were not directly assigned to control the BMI did not boost their excitability, and they demonstrated an overall energy-efficient manner in performing the task. Over the course of learning, we found that the firing rates and temporal precision of selected neurons co-evolved to generate the energy-efficient temporal patterns, suggesting that a cohesive rather than dissociable processing underlies the refinement of energy-efficient temporal patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599309PMC
http://dx.doi.org/10.3390/brainsci12101269DOI Listing

Publication Analysis

Top Keywords

temporal patterns
16
energy-efficient temporal
16
brain low
8
low energy
8
energy expense
8
bmi paradigm
8
temporal
6
energy-efficient
5
volitional generation
4
generation reproducible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!