As a novel cell type from eight-cell-stage embryos, extended pluripotent stem cells (EPSCs) are known for diverse differentiation potency in both extraembryonic and embryonic lineages, suggesting new possibilities as a developmental research model. Although various features of EPSCs have been defined, their ability to directly transfer extended pluripotency to differentiated somatic cells by cell fusion remains to be elucidated. Here, we derived EPSCs from eight-cell mouse embryos and confirmed their extended pluripotency at the molecular level and extraembryonic differentiation ability. Then, they were fused with OG2 ROSA neural stem cells (NSCs) by the polyethylene-glycol (PEG)-mediated method and further analyzed. The resulting fused hybrid cells exhibited pluripotential markers with upregulated EPSC-specific gene expression. Furthermore, the hybrid cells contributed to the extraembryonic and embryonic lineages in vivo and in vitro. RNA sequencing analysis confirmed that the hybrid cells showed distinct global expression patterns resembling EPSCs without parental expression of NSC markers, indicating the complete acquisition of extended pluripotency and the erasure of the somatic memory of NSCs. Furthermore, ultrastructural observation and metabolic analysis confirmed that the hybrid cells rearranged the mitochondrial morphology and bivalent metabolic profile to those of EPSCs. In conclusion, the extended pluripotency of EPSCs could be transferred to somatic cells through fusion-induced reprogramming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600027PMC
http://dx.doi.org/10.3390/cells11203266DOI Listing

Publication Analysis

Top Keywords

extended pluripotency
20
hybrid cells
16
somatic cells
12
cells
9
transferred somatic
8
cells cell
8
fusion-induced reprogramming
8
stem cells
8
extraembryonic embryonic
8
embryonic lineages
8

Similar Publications

Developing Topics.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

Background: Early-onset Alzheimer's disease (EOAD) is a complex disease that occurs at an early age at onset (AAO) before 65 years, constituting 5-6% of all AD cases and remains poorly understood. Patient-derived induced pluripotent stem cells (iPSCs) have been used to model different forms of EOAD that display heterogeneous disease mechanisms.

Method: We examined iPSC-derived neurons from both familial EOAD harboring mutations in PSEN1 , PSEN2, and APP and non-familial EOAD patients at an early AAO.

View Article and Find Full Text PDF

Cellular rejuvenation therapies represent a transformative frontier in addressing age-related decline and extending human health span. By targeting fundamental hallmarks of aging-such as genomic instability, epigenetic alterations, mitochondrial dysfunction, and cellular senescence-these therapies aim to restore youthful functionality to cells and tissues, offering new hope for treating degenerative diseases. Recent advancements have showcased a range of strategies, including epigenetic reprogramming, senolytic interventions, mitochondrial restoration, stem cell-based approaches, and gene-editing technologies like CRISPR.

View Article and Find Full Text PDF

Mechanistic insights into cardiac regeneration and protection through MEIS inhibition.

Turk J Biol

October 2024

Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkiye.

Article Synopsis
  • MEIS1 is a key regulator in stopping cardiomyocyte cell division and is a potential target for heart-related therapies.
  • Inhibition of MEIS1 through new small molecules (MEISi-1 and MEISi-2) boosts the growth and division of neonatal cardiomyocytes significantly compared to untreated cells.
  • MEIS1 inhibition not only reduces the expression of certain target genes but also enhances important cardiac-specific gene expression, suggesting these inhibitors could play a vital role in heart regeneration treatments.
View Article and Find Full Text PDF

Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

MTFAP: a comprehensive platform for predicting and analyzing master transcription factors.

Sci Rep

December 2024

Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.

Master transcription factors (MTFs) activate gene expression in pluripotent embryonic stem cells (ESCs) by binding to enhancers and super-enhancers, which precisely control ESC fate. Compelling evidence reveals a strong correlation between the operation of MTFs and the initiation and progression of cancer. Nevertheless, the challenge of identifying MTFs imposes a barrier for researchers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!