AI Article Synopsis

  • Peroxisome biogenesis disorders caused by gene mutations can lead to severe symptoms, including hearing impairment and early childhood death.
  • A study on mice with these mutations showed normal hearing development at first, but they later experienced increasing hearing loss linked to issues in synapses beneath inner ear hair cells.
  • The research indicated that local expression of certain genes in the cochlea is crucial for normal hearing and identified a reduction in plasmalogens in the inner ear, mirroring findings in humans with similar disorders.

Article Abstract

Peroxisome biogenesis disorders (due to gene mutations) are associated with symptoms that range in severity and can lead to early childhood death, but a common feature is hearing impairment. In this study, mice carrying mutations were found to show normal auditory development followed by an early-onset progressive increase in auditory response thresholds. The only structural defect detected in the cochlea at four weeks old was the disruption of synapses below inner hair cells. A conditional approach was used to establish that expression is required locally within the cochlea for normal hearing, rather than hearing loss being due to systemic effects. A lipidomics analysis of the inner ear revealed a local reduction in plasmalogens in the mouse mutants, comparable to the systemic plasmalogen reduction reported in human peroxisome biogenesis disorders. Thus, mice with mutations may be a useful tool to understand the physiological basis of peroxisome biogenesis disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600510PMC
http://dx.doi.org/10.3390/cells11203206DOI Listing

Publication Analysis

Top Keywords

peroxisome biogenesis
12
biogenesis disorders
12
inner ear
8
mutation hearing
4
hearing lipid
4
lipid content
4
content inner
4
ear peroxisome
4
disorders gene
4
gene mutations
4

Similar Publications

Objective: Anxiety and depression-like symptoms occur in the early stages of Alzheimer's disease. Hippocampal Sirtuin 1 (SIRT1) signaling mediates anxiety- and depression-like behavior. Exercise training improves anxiety and depression-like behavior in various disease models, such as the rat chronic restraint stress model, rat model of posttraumatic stress disorder, and rat model of fetal alcohol spectrum disorders.

View Article and Find Full Text PDF

PEX1 remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome.

bioRxiv

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in and disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the PEX1 allele, which results in a reduction of peroxisomal protein import.

View Article and Find Full Text PDF

Muscle and adipose tissue (AT) are in mutual interaction through the integration of endocrine and biochemical signals, thus regulating whole-body function and physiology. Besides a traditional view of endocrine relationships that imply the release of cytokines and growth factors, it is becoming increasingly clear that a metabolic network involving metabolites as signal molecules also exists between the two tissues. By elevating the number and functionality of mitochondria, a key role in muscle metabolism is played by the master regulator of mitochondrial biogenesis peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), that induces a fiber type shift from glycolytic to oxidative myofibers.

View Article and Find Full Text PDF

Sulforaphane treatment mimics contractile activity-induced mitochondrial adaptations in muscle myotubes.

Am J Physiol Cell Physiol

December 2024

Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada.

Mitochondria are metabolic hubs that govern skeletal muscle health. While exercise has been established as a powerful inducer of quality control processes that ultimately enhance mitochondrial function, there are currently limited pharmaceutical interventions available that emulate exercise-induced mitochondrial adaptations. To investigate a novel candidate for this role, we examined Sulforaphane (SFN), a naturally occurring compound found in cruciferous vegetables.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) pose a significant clinical challenge due to their slow healing and high risk of complications, which severely affect patient quality of life. Central to the delayed healing observed in DFUs is mitochondrial dysfunction, a critical factor impairing cellular repair processes. Phosphocreatine (PCr), a vital molecule involved in cellular energy buffering and ATP regeneration, has recently emerged as a promising therapeutic candidate for ameliorating mitochondrial dysfunction and enhancing tissue repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!