Autophagy plays an intricate role in paradigmatic human pathologies such as cancer, and neurodegenerative, cardiovascular, and autoimmune disorders. Autophagy regulation is performed by a set of autophagy-related () genes, first recognized in yeast genome and subsequently identified in other species, including humans. Several other genes have been identified to be involved in the process of autophagy either directly or indirectly. Studying the codon usage bias (CUB) of genes is crucial for understanding their genome biology and molecular evolution. Here, we examined the usage pattern of nucleotide and synonymous codons and the influence of evolutionary forces in genes involved in human autophagy. The coding sequences (CDS) of the protein coding human autophagy genes were retrieved from the NCBI nucleotide database and analyzed using various web tools and software to understand their nucleotide composition and codon usage pattern. The effective number of codons (ENC) in all genes involved in human autophagy ranges between 33.26 and 54.6 with a mean value of 45.05, indicating an overall low CUB. The nucleotide composition analysis of the autophagy genes revealed that the genes were marginally rich in GC content that significantly influenced the codon usage pattern. The relative synonymous codon usage (RSCU) revealed 3 over-represented and 10 under-represented codons. Both natural selection and mutational pressure were the key forces influencing the codon usage pattern of the genes involved in human autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601114PMC
http://dx.doi.org/10.3390/cells11203203DOI Listing

Publication Analysis

Top Keywords

codon usage
24
usage pattern
20
human autophagy
20
genes involved
16
involved human
16
genes
10
autophagy
9
pattern genes
8
autophagy genes
8
nucleotide composition
8

Similar Publications

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.

World J Microbiol Biotechnol

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.

Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

Article Synopsis
  • The tRNA epitranscriptome plays a crucial role in regulating mRNA translation, but our understanding of its tissue-specific functions is limited.
  • Analyzing seven mouse tissues revealed unique patterns of tRNA modifications, with queuosine (Q) being prominent in the brain and mitochondrial modifications in the heart.
  • By testing a codon-mutated EGFP, researchers found that protein levels varied based on tissue type, highlighting the potential for tailoring gene therapies to enhance their effectiveness in specific tissues or conditions.
View Article and Find Full Text PDF

is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!