One of the main indices of the quality of water is the biochemical oxygen demand (BOD). A little over 40 years have passed since the practical application of the first microbial sensor for the determination of BOD, presented by the Japanese professor Isao Karube. This time span has brought new knowledge to and practical developments in the use of a wide range of microbial cells based on BOD biosensors. At present, this field of biotechnology is becoming an independent discipline. The traditional BOD analysis (BOD) has not changed over many years; it takes no less than 5 days to carry out. Microbial biosensors can be used as an alternative technique for assessing the BOD attract attention because they can reduce hundredfold the time required to measure it. The review examines the experience of the creation and practical application of BOD biosensors accumulated by the international community. Special attention is paid to the use of multiple cell immobilization methods, signal registration techniques, mediators and cell consortia contained in the bioreceptor. We consider the use of nanomaterials in the modification of analytical devices developed for BOD evaluation and discuss the prospects of developing new practically important biosensor models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599453 | PMC |
http://dx.doi.org/10.3390/bios12100842 | DOI Listing |
Microb Biotechnol
January 2025
Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China.
is a common microorganism in the human gut that has been linked to health benefits. Furthermore, it is an emerging synthetic biology chassis with the potential to be modified into diagnostic or therapeutic engineered probiotics. However, the absence of biological components limits its further applications.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.
Organic acids constitute a vital category of chemical raw materials. They have extensive applications in industries such as polymers, food, and pharmaceuticals. Currently, industrial production predominantly relies on microbial fermentation.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam.
This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD in textile wastewater using GGA standard solution.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
Background: During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid.
Main Text: In this review, we scrutinize the main applications of engineered S.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!