Quantification of proton exchange rate (kex) is a challenge in MR studies. Current techniques either have low resolutions or are dependent on the estimation of parameters that are not measurable. The Omega plot method, on the other hand, provides a direct way for determining kex independent of the agent concentration. However, it cannot be used for in vivo studies without some modification due to the contributions from the water signal. In vivo tissue proton exchange rate (kex) MRI, based on the direct saturation (DS) removed Omega plot, quantifies the weighted average of kex of the endogenous tissue metabolites. This technique has been successfully employed for imaging the variation in the kex of ex vivo phantoms, as well as in vivo human brains in healthy subjects, and stroke or multiple sclerosis (MS) patients. In this paper, we present a brief review of the methods used for kex imaging with a focus on the development of in vivo kex MRI technique based on the DS-removed Omega plot. We then review the recent clinical studies utilizing this technique for better characterizing brain lesions. We also outline technical challenges for the presented technique and discuss its prospects for detecting tissue microenvironmental changes under oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599426 | PMC |
http://dx.doi.org/10.3390/bios12100815 | DOI Listing |
Nanomaterials (Basel)
January 2025
Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.
View Article and Find Full Text PDFNano Lett
January 2025
College of Energy, Xiamen University, Xiamen 361102, China.
The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, School of Chemical Engineering and Technology, Weijin Road, 300072, Tianjin, CHINA.
Phosphoric acid (H3PO4) doping is a widely employed strategy to facilitate anhydrous proton transport in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). However, significant H3PO4 leaching during long-term operation poses critical challenges to maintaining membrane stability and proton conductivity. Herein, H3PO4 is incorporated into positively charged nanochannels of quaternized covalent organic framework membranes (QACOFMs), leveraging strong electrostatic interactions and confinement effects to achieve exceptional H3PO4 retention under hydration conditions.
View Article and Find Full Text PDFACS Catal
January 2025
Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic.
Achieving the optimal balance between cost-efficiency and stability of oxygen reduction reaction (ORR) catalysts is currently among the key research focuses aiming at reaching a broader implementation of proton-exchange membrane fuel cells (PEMFCs). To address this challenge, we combine two well-established strategies to enhance both activity and stability of platinum-based ORR catalysts. Specifically, we prepare ternary PtNi-Au alloys, where each alloying element plays a distinct role: Ni reduces costs and boosts ORR activity, while Au enhances stability.
View Article and Find Full Text PDFTurk J Chem
December 2024
Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria.
In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!