Each year, 20 million tons of wine by-products are generated, corresponding to 30% of the total quantity of vinified grapes. Wine by-products are a source of healthy bioactive molecules, such as polyphenols and other molecules (pigments, fibers, minerals, etc.). The abundance of bioactive compounds assures a promising future for nutritional foodstuff production. Wine by-products can be used to fortify aromatized waters and infusions, bread, pasta, dairy products, alcohol, sugary beverages, and processed foods. These innovative products are part of the Mediterranean diet and are of great interest to both human and environmental health. Pre-clinical studies show that consumption of food produced with wine by-products or with their extracts attenuates the inflammatory state and increases antioxidant status. As such, wine by-products provide protective effects against the underlying pathophysiological hallmarks of some chronic diseases such as atherosclerosis, diabetes, hypertension, obesity, and cancer. However, the poor bioavailability warrants further investigation on how to optimize the efficacy of wine by-products, and more clinical trials are also needed. The scientific evidence has validated the uses of the dietary nature of wine by-products and has helped to promote their use as a functional food to prevent chronic human diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598427 | PMC |
http://dx.doi.org/10.3390/antiox11102025 | DOI Listing |
Food Chem
December 2024
The Blue Chemistry Lab Group, Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy. Electronic address:
Grape pomace (GP), a by-product of the wine supply chain process, contains bioactive molecules with known healthy properties. This study examines the impact of different extraction techniques on three GPs of Aglianico cultivar [Cantine del Notaio, Barile, and Torrecuso]. Five eco-friendly extractive techniques [maceration (MAC), digestion (DIG), accelerated solvent extraction (ASE), microwaves (MW), and ultrasound (US)] were used with 50 % ethanol/water as solvent.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
School of Agronomy, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile. Electronic address:
This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
Pomegranate ( L.) has long been recognised for its rich antioxidant profile and potential health benefits. Recent research has expanded its therapeutic potential to include antiangiogenic properties, which are crucial for inhibiting the growth of tumours and other pathological conditions involving aberrant blood vessel formation.
View Article and Find Full Text PDFMolecules
November 2024
Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
Grape ( L.) stems, a by-product of winemaking, possess significant potential value due to their rich polyphenolic composition, which allows their exploitation for cosmetic and pharmaceutical applications. This presents a promising opportunity for valorisation aimed at developing innovative products with potential health-promoting effects.
View Article and Find Full Text PDFSci Rep
November 2024
School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, 6102, Australia.
Molluscan shellfish aquaculture contributes to 42.6% of global aquaculture production. With a continued increase in shellfish production, disposal of shell waste during processing is emerging as an environmental and financial concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!