Agar accounts for ~60% of the dry weight of some red macroalgae, and the breakdown of this kind of polysaccharide releases high-value compounds; therefore, the resource utilization of agar is of great significance to improve the added value of these macroalgae. Herein, QZ9-9 isolated from tropical in Hainan Island was characterized as an agarolytic bacterium, which displayed a high agar-degrading activity. The highest diameters of the degradation zones of the QZ9-9 and its extracellular-agarase (12.16 U/mL) were 41.46 mm and 22.89 mm, respectively, and the first-order degradation rate constants of those were 0.02 h and 0.77 U, respectively. Importantly, the fermentation products of QZ9-9 exhibited antioxidant activity, and the peak of DPPH scavenging activity of 50 h fermentation products of this strain was up to 50.79% in the reaction for 1 h; the DPPH scavenging activity of low molecule metabolites (≤3 kDa) in particular was up to ~85.85%. A total of 766 metabolites were detected in the low molecule metabolites by metabolomics. The peptide-like metabolites, such as prolyl-histidine, isoleucyl-histidine, isoleucyl-proline and arginyl-proline, and the antioxidant maculosin were found in the top 20 metabolites with relatively high abundance. Additionally, the antioxidant activity of maculosin was further verified in this work. We concluded that the low molecule metabolites of QZ9-9 with relatively high antioxidant activity are interesting candidates for preparing desirable non-toxic antioxidants, thereby facilitating the high value-added utilization of macroalgae in the fields of cosmetic, food preservation, and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598285 | PMC |
http://dx.doi.org/10.3390/antiox11101977 | DOI Listing |
Free Radic Res
January 2025
Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.
View Article and Find Full Text PDFFront Immunol
December 2024
Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!