An Inductively Powered Implantable System to Study the Gastrointestinal Electrophysiology in Freely Behaving Rodents.

Bioengineering (Basel)

Bioinstrumentation and Medical Diagnostic Systems (BioMDS) Laboratory at the Department of Materials Science and Biomedical Engineering, The University of Wisconsin-Eau Claire, Eau Claire, WI 54702, USA.

Published: October 2022

Chronic studies in the fasting and fed states of conscious subjects are fundamental for understanding the pathophysiological significance of functional gastrointestinal (GI) disorders and motility dysfunctions. To study the electrophysiology of the GI tract in the long term, the development of gastric implants is essential. This paper presents the development of an implantable system capable of monitoring the bioelectrical activity of the gastric system and modulating the activity in freely behaving rodents. The system consists of a miniature-sized implantable unit (IU), a stationary unit (SU) that communicates with the IU over a 2.4 GHz far-field radio frequency (RF) bidirectional link, and a charging unit (CU) that establishes an inductive 13.56 MHz near-field communication (NFC) with the IU, implementing an adaptive wireless power transfer (WPT). The CU can generate an adjustable power between +20 dBm and +30 dBm, and, in the presence of body movements and stomach motility, can deliver a constant rectified voltage to the IU. The live subject's exposure to the electromagnetic WPT in the developed system complies with the RF energy absorption restrictions for health and safety concerns. The system can be utilized to investigate the relationship between functional GI disorders and dysrhythmias in the gastric bioelectrical activity and study the potential of electroceutical therapies for motility dysfunctions in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598414PMC
http://dx.doi.org/10.3390/bioengineering9100530DOI Listing

Publication Analysis

Top Keywords

implantable system
8
freely behaving
8
behaving rodents
8
motility dysfunctions
8
bioelectrical activity
8
system
6
inductively powered
4
powered implantable
4
system study
4
study gastrointestinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!