Acute pancreatitis (AP) is a potentially life-threatening gastrointestinal disease with a complex pathology including oxidative stress. Oxidative stress triggers oxidative DNA lesions such as formation of 7,8-dihydro-8-oxo-2'-oxoguanine (8-oxoG) and also causes DNA strand breaks. DNA breaks can activate the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) which contributes to AP pathology. 8-oxoG is recognized by 8-oxoG glycosylase 1 (OGG1) resulting in the removal of 8-oxoG from DNA as an initial step of base excision repair. Since OGG1 also possesses a DNA nicking activity, OGG1 activation may also trigger PARP1 activation. In the present study we investigated the role played by OGG1 in AP. We found that the OGG1 inhibitor compound TH5487 reduced edema formation, inflammatory cell migration and necrosis in a cerulein-induced AP model in mice. Moreover, TH5487 caused 8-oxoG accumulation and reduced tissue poly(ADP-ribose) levels. Consistent with the indirect PARP inhibitory effect, TH5487 shifted necrotic cell death (LDH release and Sytox green uptake) towards apoptosis (caspase activity) in isolated pancreatic acinar cells. In the in vivo AP model, TH5487 treatment suppressed the expression of various cytokine and chemokine mRNAs such as those of TNF, IL-1β, IL1ra, IL6, IL16, IL23, CSF, CCL2, CCL4, CCL12, IL10 and TREM as measured with a cytokine array and verified by RT-qPCR. As a potential mechanism underlying the transcriptional inhibitory effect of the OGG1 inhibitor we showed that while 8-oxoG accumulation in the DNA facilitates NF-κB binding to its consensus sequence, when OGG1 is inhibited, target site occupancy of NF-κB is impaired. In summary, OGG1 inhibition provides protection from tissue injury in AP and these effects are likely due to interference with the PARP1 and NF-κB activation pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599718 | PMC |
http://dx.doi.org/10.3390/biomedicines10102543 | DOI Listing |
Arch Toxicol
January 2025
Department of Medicine, University of California, San Diego, CA, 92093, USA.
E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.
ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome.
View Article and Find Full Text PDFIran J Parasitol
January 2024
Department of Pre-Clinical, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia.
Background: The interplay of OGG1, 8-Oxoguanine, and oxidative stress triggers the exaggerated release of cytokines during malaria, which worsens the outcome of the disease. We aimed to investigate the involvement of OGG1 in malaria and assess the effect of modulating its activity on the cytokine environment and anemia during malaria in mice.
Methods: infection in ICR mice was used as a malaria model.
Nat Commun
December 2024
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana 500037, India. Electronic address:
Silent mating-type information regulation 2 homology 3 (SIRT3) is a member of the sirtuins family expressed in mitochondria performs deacetylation of metabolic enzymes and promotes longevity. 7-hydroxy-3-(4'-methoxyphenyl) coumarin (C12) is a small molecule first ever known for its direct activation of SIRT3. SIRT3 performs its function by balancing the redox system by activating manganese superoxide dismutase (MnSOD) and 8-Oxoguanine glycosylase (OGG1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!