Acute liver failure (ALF) is a rare but devastating disease associated with substantial morbidity and a mortality rate of almost 45%. Medical treatments, apart from supportive care, are limited and liver transplantation may be the only rescue option. Large animal models, which most closely represent human disease, can be logistically and technically cumbersome, expensive and pose ethical challenges. The development of isolated organ perfusion technologies, originally intended for preservation before transplantation, offers a new platform for experimental models of liver disease, such as ALF. In this study, female domestic swine underwent hepatectomy, followed by perfusion of the isolated liver on a normothermic machine perfusion device. Five control livers were perfused for 24 h at 37 °C, while receiving supplemental oxygen and nutrition. Six livers received toxic doses of acetaminophen given over 12 h, titrated to methemoglobin levels. Perfusate was sampled every 4 h for measurement of biochemical markers of injury (e.g., aspartate aminotransferase [AST], alanine aminotransferase [ALT]). Liver biopsies were taken at the beginning, middle, and end of perfusion for histological assessment. Acetaminophen-treated livers received a median dose of 8.93 g (8.21-9.75 g) of acetaminophen, achieving a peak acetaminophen level of 3780 µmol/L (3189-3913 µmol/L). Peak values of ALT (76 vs. 105 U/L; = 0.429) and AST (3576 vs. 4712 U/L; = 0.429) were not significantly different between groups. However, by the end of perfusion, histology scores were significantly worse in the acetaminophen treated group ( = 0.016). All acetaminophen treated livers developed significant methemoglobinemia, with a peak methemoglobin level of 19.3%, compared to 2.0% for control livers ( = 0.004). The development of a model of ALF in the ex vivo setting was confounded by the development of toxic methemoglobinemia. Further attempts using alternative agents or dosing strategies may be warranted to explore this setting as a model of liver disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598959PMC
http://dx.doi.org/10.3390/biomedicines10102496DOI Listing

Publication Analysis

Top Keywords

acute liver
8
liver failure
8
liver disease
8
control livers
8
livers received
8
u/l 0429
8
acetaminophen treated
8
liver
7
perfusion
5
livers
5

Similar Publications

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

Objectives: To describe the clinical presentation and clinicopathological findings of dogs with nodular splenic lesions composed of heterogeneous cell components associated with systemic inflammation and to provide information on the outcome after surgical resection.

Materials And Methods: Medical records were searched for dogs with histologically and immunohistochemically characterised nodular splenic lesions with mixed stromal, histiocytic and lymphoid cells and the presence of systemic inflammatory markers at the time of diagnosis.

Results: Four dogs were included, of which three had an undifferentiated splenic stromal sarcoma and one had a splenic leiomyosarcoma.

View Article and Find Full Text PDF

Structure-based discovery of novel diarylpyrimidines as potent and selective Non-Nucleoside reverse transcriptase inhibitors: From CH(CN)-Biphenyl-Diarylpyrimidines to CNNH-Biphenyl-Diarylpyrimidines.

Eur J Med Chem

January 2025

Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China; Institute of Flow Chemistry and Engineering, School of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:

In order to enhance the anti-HIV-1 potency and selectivity of the previously reported compound 3 (EC = 27 nM, SI = 1361), a series of novel biphenyl-diarylpyrimidine derivatives were developed by employing structure-based drug design strategy. Among these derivatives, compound M44 demonstrated the most potent inhibitory activity against wild-type (WT) HIV-1 as well as five drug-resistant mutants (EC = 5-148 nM), which were 5-173 times more potent than that of 3 (EC = 27-9810 nM). Furthermore, this analogue exhibited approximately 11-fold lower cytotoxicity (CC = 54 μM) than that of etravirine and rilpivirine.

View Article and Find Full Text PDF

Aerobic exercise (AE) is associated with a significant hypoglycemia risk in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms in the liver and skeletal muscle governing exercise-induced hypoglycemia in T1DM are poorly understood. This study examined the effects of a 60-minute bout of AE on hepatic and muscle glucose metabolism in T1DM rats.

View Article and Find Full Text PDF

Background: Refractory ascites (RA) remains a serious complication in patients with cirrhosis. Currently, the insertion of a TIPS is considered the standard of care in these patients. To achieve symptom control in those with TIPS contraindications, tunneled peritoneal catheters (PeCa) or ascites pumps were introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!