ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation. In turn, force and actin filament (F-actin) nucleotide state regulate actin dynamics by tuning F-actin's engagement of actin-binding proteins through mechanisms that are unclear. Here we show that the nucleotide state of actin modulates F-actin structural transitions evoked by bending forces. Cryo-electron microscopy structures of ADP-F-actin and ADP-P-F-actin with sufficient resolution to visualize bound solvent reveal intersubunit interfaces bridged by water molecules that could mediate filament lattice flexibility. Despite extensive ordered solvent differences in the nucleotide cleft, these structures feature nearly identical lattices and essentially indistinguishable protein backbone conformations that are unlikely to be discriminable by actin-binding proteins. We next introduce a machine-learning-enabled pipeline for reconstructing bent filaments, enabling us to visualize both continuous structural variability and side-chain-level detail. Bent F-actin structures reveal rearrangements at intersubunit interfaces characterized by substantial alterations of helical twist and deformations in individual protomers, transitions that are distinct in ADP-F-actin and ADP-P-F-actin. This suggests that phosphate rigidifies actin subunits to alter the bending structural landscape of F-actin. As bending forces evoke nucleotide-state dependent conformational transitions of sufficient magnitude to be detected by actin-binding proteins, we propose that actin nucleotide state can serve as a co-regulator of F-actin mechanical regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646526 | PMC |
http://dx.doi.org/10.1038/s41586-022-05366-w | DOI Listing |
Adv Mater
January 2025
Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhonghuancun, Haidian District, Beijing 100081, Beijing, 100081, CHINA.
The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, owing to a lack of real bird flight data, in-depth studies on the aerodynamic properties of these coupled motions remain scarce.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
In order to improve the performance of cement mortar (Portland cement), it was enriched with triclosan, hypochlorous acid, silver nanoparticles and graphene oxide. Cement mortar is used, among other things, to fill the gaps between the tiles of building porcelain stoneware. A number of structural, mechanical and biological tests were carried out.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
This paper presents the results of a pilot application of Powder-Bed Fusion of Metals Using a Laser (PBF-LB/M) for the fabrication of M300 (1.2709) maraging steel sheet metal bending tools. S235 steel was used as a substrate for the fabrication of bending punches.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.
Buckling is a significant concern for cable-stayed bridges that incorporate a large number of steel components, particularly those featuring unique-shaped towers that require further examination due to the intricate internal force and stress distribution. This paper investigates the buckling behavior of a cable-stayed bridge with inverted V-shaped towers. The cable tower is characterized by its unique design that consists of diagonal bracings and columns in a compression-bending state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!