Copper adorned magnetic nanoparticles as a heterogeneous catalyst for Sonogashira coupling reaction in aqueous media.

Sci Rep

Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, ˇSlechtitelů 27, 783 71, Olomouc, Czech Republic.

Published: October 2022

A nanomagnetic hydrophilic heterogeneous copper catalyst, termed γ-FeO@PEG@PAMAM G-Cu, has been successfully prepared and characterized using FT-IR, XRD, FE-SEM, TEM, EDX, mapping, TGA/DTG, VSM and ICP analyses. The catalyst displayed excellent activity for the palladium-free Sonogashira cross coupling reaction of various aryl iodides and bromides with phenylacetylene derivatives in pure water. The presence of polyethylene glycol coupled with hydrophilic character of the Cu-catalyst adorned on γ-FeO MNPs provides the ready dispersion of the catalyst particles in water, leading to higher catalytic performance as well as facile catalyst recovery via simple magnetic decantation. The recovered catalyst was reused for at least six successive runs with little reduction in its catalytic activity and any noticeable changes in its structure. The use of water as a green solvent, without requiring any additive or organic solvent, as well as the exploitation of abundant and low-cost copper catalyst instead of expensive Pd catalyst along with the catalyst recovery and scalability, make this method favorable from environmental and economic points of view for the Sonogashira coupling reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606120PMC
http://dx.doi.org/10.1038/s41598-022-22567-5DOI Listing

Publication Analysis

Top Keywords

coupling reaction
12
catalyst
9
sonogashira coupling
8
copper catalyst
8
catalyst recovery
8
copper adorned
4
adorned magnetic
4
magnetic nanoparticles
4
nanoparticles heterogeneous
4
heterogeneous catalyst
4

Similar Publications

Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances.

Bioresour Technol

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined.

View Article and Find Full Text PDF

A review of polysorbate quantification and its degradation analysis by liquid chromatography coupled with charged aerosol detection.

J Chromatogr A

December 2024

Thermofisher Scientific (China) Co. Ltd. Building A, No.2517 Jinke Road, Pudong District, Shanghai 201203, China. Electronic address:

Polysorbates (PS), as non-ionic surfactants, contribute significantly to the stability of proteins in formulations. However, their lack of chromophore groups makes them difficult to detect with high sensitivity and simplicity. The charged aerosol detector (CAD) is an emerging and universal detector that can provide highly sensitive response signals to non-volatile or semi-volatile substances, such as esters, acids, oxidized aldehydes, and contaminant ions in PS.

View Article and Find Full Text PDF

Cross-Coupling of Carbonyl Derivatives and -Arylamines Enabled by Visible Light for Easy Access to 1,2-Amino Alcohols.

J Org Chem

January 2025

International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.

We disclosed a new strategy for the synthesis of 1,2-amino alcohols enabled by visible light without the requirement of a photocatalyst and metal. Under light irradiation at 400 nm, the reaction of carbonyl derivatives and -arylamines proceeds via an electron-donor-acceptor (EDA) intermediate, obtaining diverse vicinal amino alcohols decorated with a two-electron-rich/-deficient aryl group.

View Article and Find Full Text PDF

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

A facile copper-catalyzed, base-controlled cyclization reaction has been developed for the synthesis of 9-membered cycloalkyne and 6-membered heterocycle sultams under mild conditions. This protocol utilizes a copper-catalyzed intramolecular A (alkyne-aldehyde-amine) coupling reaction to efficiently synthesize 9-membered cycloalkyne sultams in yields up to 90%. Alternatively, by substituting NaHCO with DBU, the protocol achieves selective deprotection of the -propargyl group, thereby facilitating the formation of 6-membered heterocyclic sultams, also in high yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!