Advances in metagenomic assembly have led to the discovery of genomes belonging to uncultured microorganisms. Metagenome-assembled genomes (MAGs) often suffer from fragmentation and chimerism. Recently, 20 complete MAGs (cMAGs) have been assembled from Oxford Nanopore long-read sequencing of 13 human fecal samples, but with low nucleotide accuracy. Here, we report 102 cMAGs obtained by Pacific Biosciences (PacBio) high-accuracy long-read (HiFi) metagenomic sequencing of five human fecal samples, whose initial circular contigs were selected for complete prokaryotic genomes using our bioinformatics workflow. Nucleotide accuracy of the final cMAGs was as high as that of Illumina sequencing. The cMAGs could exceed 6 Mbp and included complete genomes of diverse taxa, including entirely uncultured RF39 and TANB77 orders. Moreover, cMAGs revealed that regions hard to assemble by short-read sequencing comprised mostly genomic islands and rRNAs. HiFi metagenomic sequencing will facilitate cataloging accurate and complete genomes from complex microbial communities, including uncultured species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606305 | PMC |
http://dx.doi.org/10.1038/s41467-022-34149-0 | DOI Listing |
Nat Commun
January 2025
Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland.
Searching for similar genomic sequences is an essential and fundamental step in biomedical research. State-of-the-art computational methods performing such comparisons fail to cope with the exponential growth of genomic sequencing data. We introduce the concept of sparsified genomics where we systematically exclude a large number of bases from genomic sequences and enable faster and memory-efficient processing of the sparsified, shorter genomic sequences, while providing comparable accuracy to processing non-sparsified sequences.
View Article and Find Full Text PDFMicrobiome
January 2025
Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China.
Background: The rumen harbors a diverse virome that interacts with other microorganisms, playing pivotal roles in modulating metabolic processes within the rumen environment. However, the characterization of rumen viruses remains incomplete, and their association with production traits, such as feed efficiency (FE), has not been documented. In this study, rumen fluid from 30 Chinese Holstein dairy cows was analyzed using next-generation sequencing (NGS) and High-Fidelity (HiFi) sequencing to elucidate the rumen DNA virome profile and uncover potential viral mechanisms influencing FE.
View Article and Find Full Text PDFMicroorganisms
December 2024
Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China.
Traditional methods for studying microbial communities have been limited due to difficulties in culturing and sequencing all microbial species. Recent advances in third-generation sequencing technologies, particularly PacBio's high-fidelity (HiFi) sequencing, have significantly advanced metagenomics by providing accurate long-read sequences. This review explores the role of HiFi sequencing in overcoming the limitations of previous sequencing methods, including high error rates and fragmented assemblies.
View Article and Find Full Text PDFEnviron Microbiome
December 2024
Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic.
Background: Deadwood decomposition is an essential ecological process in forest ecosystems, playing a key role in nutrient cycling and carbon sequestration by enriching soils with organic matter. This process is driven by diverse microbial communities encompassing specialized functions in breaking down organic matter, but the specific roles of individual microorganisms in this process are still not fully understood.
Results: Here, we characterized the deadwood microbiome in a natural mixed temperate forest in Central Europe using PacBio HiFi long-read sequencing and a genome-resolved transcriptomics approach in order to uncover key microbial contributors to wood decomposition.
BMC Genomics
November 2024
CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
Background: Microbes produce diverse bioactive natural products with applications in fields such as medicine and agriculture. In their genomes, these natural products are encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Genome and metagenome sequencing advances have enabled high-throughput identification of BGCs as a promising avenue for natural product discovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!