Regulating the exposed crystal facets of α-FeO to promote FeO-modified biochar performance in heavy metals adsorption.

Chemosphere

School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.

Published: January 2023

α-FeO modified biochar (FeO/BC) was prepared to remove Cu(II), Pb(II) and As(V). By adjusting the calcination temperature, the morphology and exposed crystal facets of α-FeO on the biochar were changed which further affected the adsorption performance. The kinetics and isotherms were investigated systematically to reveal adsorption effect of the adsorbent on Cu(II), Pb(II) and As(V). The results indicated that chemisorption process was the dominant adsorption mechanism. FeO/BC-350 exhibited superior adsorption capacity for Cu(II) (258.22 mg/g) and Pb(II) (390.60 mg/g), and FeO/BC-250 showed relatively good adsorption capacity for As(V) (5.78 mg/g). By adsorption mechanism analysis, electrostatic adsorption, ion exchange, precipitation and complexation were coexisted in the process of removing metal ions by FeO/BC. The repeatability test and the effect of ion strength exhibited the strong stability of FeO/BC. Meanwhile, density functional theory (DFT) calculations manifested that the (202) facet of α-FeO on FeO/BC-350 possessed the lowest adsorption energies of Cu(II) and Pb(II). While for As(V), it was the (104) facet of α-FeO on FeO/BC-250 that exhibited the lowest adsorption energy. DFT results revealed that different FeO/BC had different adsorption affinities to various heavy metals. In general, this work not only prepared a promising adsorbent via a simple procedure, but also served as a reference for researchers in designing absorbents with specific active facet for efficient heavy metals remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136976DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
cuii pbii
12
pbii asv
12
adsorption
11
exposed crystal
8
crystal facets
8
facets α-feo
8
adsorption mechanism
8
adsorption capacity
8
facet α-feo
8

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!