A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2. | LitMetric

AI Article Synopsis

  • Researchers are exploring gene-based therapies to reduce ataxin-2 levels for treating neurodegenerative diseases like ALS and SCA2.
  • A genome-wide study identified the RTN4R gene, which influences ataxin-2 levels, and demonstrated that targeting this gene can effectively lower ataxin-2 in both human and mouse neurons.
  • The findings suggest that targeting the RTN4/NoGo-Receptor could be a new treatment strategy for ALS and SCA2, as reducing either RTN4 or ataxin-2 promotes better axonal regeneration after nerve injury.

Article Abstract

Gene-based therapeutic strategies to lower ataxin-2 levels are emerging for the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). Additional strategies to lower levels of ataxin-2 could be beneficial. Here, we perform a genome-wide arrayed small interfering RNA (siRNA) screen in human cells and identify RTN4R, the gene encoding the RTN4/NoGo-Receptor, as a potent modifier of ataxin-2 levels. RTN4R knockdown, or treatment with a peptide inhibitor, is sufficient to lower ataxin-2 protein levels in mouse and human neurons in vitro, and Rtn4r knockout mice have reduced ataxin-2 levels in vivo. We provide evidence that ataxin-2 shares a role with the RTN4/NoGo-Receptor in limiting axonal regeneration. Reduction of either protein increases axonal regrowth following axotomy. These data define the RTN4/NoGo-Receptor as a novel therapeutic target for ALS and SCA2 and implicate the targeting of ataxin-2 as a potential treatment following nerve injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664481PMC
http://dx.doi.org/10.1016/j.celrep.2022.111505DOI Listing

Publication Analysis

Top Keywords

ataxin-2 levels
12
ataxin-2
8
strategies lower
8
lower ataxin-2
8
levels
6
targeting rtn4/nogo-receptor
4
rtn4/nogo-receptor reduces
4
reduces levels
4
levels als
4
als protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!