Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667709 | PMC |
http://dx.doi.org/10.1016/j.celrep.2022.111538 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!