Comprehensive Study of HCN: Potential Energy Surfaces, State-to-State Kinetics, and Master Equation Analysis.

J Phys Chem A

Center for Hypersonics & Entry Systems Studies, Department of Aerospace Engineering, University of Illinois, Urbana-Champaign, Urbana, Illinois61801, United States.

Published: November 2022

Understanding the kinetics of the HCN system is critical to several disciplines in science and engineering, including interstellar chemistry, atmospheric reentry, and combustion, to name a few. This paper constructs a rovibrational state-specific kinetic mechanism for the HCN system, leveraging electronic structure calculations, classical scattering dynamics, and state-to-state kinetics. To this aim, three accurate potential energy surfaces (PESs), ', ', and ″, are constructed using multireference configuration interaction (MRCI) calculations for a comprehensive arrangement of the nuclei. Quasi-classical scattering calculations provide elementary reaction rate constants resulting from the interaction between the CN, CH, and NH molecules with H, N, and C atoms, respectively. The rovibrational collisional model developed comprises 50 million bound-bound and free-bound collisional processes. This model is used to study the dynamics of energy transfer and dissociation in an isochoric and isothermal chemical reactor the solution of the master equation for a wide temperature range from 1000 to 10,000 K. This study unravels the dynamics of dissociation of the molecules in the HCN system, which the PESs primarily control the formation of short-lived intermediates that shortcut the dissociation pathway. The exchange processes in CH and NH enhance the dissociation by over 80%. The importance of exchange processes is also highlighted in comparing the quasi-steady state and thermal dissociation rates with state-of-the-art rate models and experimental fits.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c03959DOI Listing

Publication Analysis

Top Keywords

hcn system
12
potential energy
8
energy surfaces
8
state-to-state kinetics
8
master equation
8
exchange processes
8
dissociation
5
comprehensive study
4
hcn
4
study hcn
4

Similar Publications

Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) can lead to severe neuropathic pain and increased risk of myocardial infarction and heart failure; therefore, the use of analgesics against SCI-induced pain should be minimized because of their adverse effects on the cardiovascular system. Ivabradine, a blocker of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, is used as a bradycardic agent, but recent studies focused on it as an analgesic agent for peripheral neuropathic pain. However, the analgesic effects of ivabradine on central neuropathic pain, such as SCI-induced pain, have not been examined.

View Article and Find Full Text PDF

Description of changes in chemical bonding along the pathways of chemical reactions by deformation of the molecular electrostatic potential.

J Mol Model

January 2025

Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.

Context: The analysis of the changes in the electronic structure along intrinsic reaction coordinate (IRC) paths for model reactions: (i) ethylene + butadiene cycloaddition, (ii) prototype SN2 reaction Cl + CH3Cl, (iii) HCN/CNH isomerization assisted by water, (iv) CO + HF → C(O)HF was performed, in terms of changes in the deformation density (Δr) and the deformation of MEP (ΔMEP). The main goal was to further examine the utility of the ΔMEP as a descriptor of chemical bonding, and to compare the pictures resulting from Δr and ΔMEP. Both approaches clearly show that the main changes in the electronic structure occur in the TS region.

View Article and Find Full Text PDF

Laboratory investigations of photochemical reactions in simulated Titan-like atmospheric systems provide insight into the formation of gas and aerosol products and the influence of different environmental parameters on the types of organic molecules generated. Studying the gas-phase products as a function of reaction time provides further insight into the reaction pathways that lead to organic production. The stable isotopes in the reactants and products serve as tracers and help to disentangle these reaction pathways.

View Article and Find Full Text PDF

The problem of low carbon-nitrogen ratio (C/N) in wastewater is a major challenge for biological treatment, especially the complex pollution of ammonia nitrogen (NH-N), sulfamethoxazole (SMX), and copper ions (Cu(II)). Herein, a strain of Pseudoxanthomonas sp. MA23 with manganese (Mn) reduction-coupled ammonia oxidation properties was isolated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!