Yeast is widely used in the fermentation industry, and the major challenges in fermentation production system are high capital cost and low reaction rate. High cell-density culture is an effective method to increase the volumetric productivity of the fermentation process, thus making the fermentation process faster and more robust. During fermentation, yeast is subjected to various environmental stresses, including osmotic, ethanol, oxidation, and heat stress. To cope with these stresses, yeast cells need appropriate adaptive responses to acquire stress tolerances to prevent stress-induced cell damage. Since a single stressor can trigger multiple effects, both specific and nonspecific effects, general and specific stress responses are required to achieve comprehensive protection of cells. Since all these stresses disrupt protein structure, the upregulation of heat shock proteins and trehalose genes is induced when yeast cells are exposed to stress. A better understanding of the research status of yeast HCDC and its underlying response mechanism to various stresses during fermentation is essential for designing effective culture control strategies and improving the fermentation efficiency and stress resistance of yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsyr/foac050DOI Listing

Publication Analysis

Top Keywords

high cell-density
8
cell-density culture
8
fermentation
8
fermentation yeast
8
fermentation process
8
yeast cells
8
stress
6
yeast
6
review yeast
4
yeast high
4

Similar Publications

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer, and immune checkpoint inhibitors (ICIs) have shown efficacy in its treatment. The combination of chemotherapy and ICIs represents a new trend in the standard care for metastatic NPC. In this study, we aim to clarify the immune cell profile and related prognostic factors in the ICI-based treatment of metastatic NPC.

View Article and Find Full Text PDF

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

Computerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules.

View Article and Find Full Text PDF

Introduction: Despite treatment with antibiotic therapy, spontaneous bacterial peritonitis (SBP) accounts for approximately 20-40% mortality in hospitalized patients. The data is scarce regarding mortality predictors in SBP. Recently, multiple factors have been studied for effectiveness in prognosis prediction in SBP.

View Article and Find Full Text PDF

Background: Patients with tuberculous meningitis (TBM) are at high risk of ischemic stroke, and stroke is a poor prognosticator of TBM. However, reports regarding the predictors of stroke in TBM patients are scanty. The aim of this study was to investigate the clinical characteristics and predictors of tuberculous meningitis-related ischemic stroke (TBMRIS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!