A Robust and Sensitive Spectrophotometric Assay for the Enzymatic Activity of Bacterial Adenylate Cyclase Toxins.

Toxins (Basel)

Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France.

Published: October 2022

Various bacterial pathogens are producing toxins that target the cyclic Nucleotide Monophosphate (cNMPs) signaling pathways in order to facilitate host colonization. Among them, several are exhibiting potent nucleotidyl cyclase activities that are activated by eukaryotic factors, such as the adenylate cyclase (AC) toxin, CyaA, from or the edema factor, EF, from . The characterization of these toxins frequently requires accurate measurements of their enzymatic activity in vitro, in particular for deciphering their structure-to-function relationships by protein engineering and site-directed mutagenesis. Here we describe a simple and robust in vitro assay for AC activity based on the spectrophotometric detection of cyclic AMP (cAMP) after chromatographic separation on aluminum oxide. This assay can accurately detect down to fmol amounts of CyaA and can even be used in complex media, such as cell extracts. The relative advantages and disadvantages of this assay in comparison with other currently available methods are briefly discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609896PMC
http://dx.doi.org/10.3390/toxins14100691DOI Listing

Publication Analysis

Top Keywords

enzymatic activity
8
adenylate cyclase
8
robust sensitive
4
sensitive spectrophotometric
4
assay
4
spectrophotometric assay
4
assay enzymatic
4
activity bacterial
4
bacterial adenylate
4
cyclase toxins
4

Similar Publications

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway.

Appl Microbiol Biotechnol

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.

View Article and Find Full Text PDF

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Unlabelled: Human norovirus (HuNoV) is a leading cause of gastroenteritis worldwide and is associated with significant morbidity, mortality, and economic impact. There are currently no licensed antiviral drugs for the treatment of HuNoV-associated gastroenteritis. The HuNoV protease plays a critical role in the initiation of virus replication by cleaving the polyprotein.

View Article and Find Full Text PDF

Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters.

Nanoscale

January 2025

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!