Secreted phospholipases A2 (sPLA2s) are peripheral membrane enzymes that hydrolyze phospholipids in the position. The action of sPLA2 is associated with the work of two active sites. One, the interface binding site (IBS), is needed to bind the enzyme to the membrane surface. The other one, the catalytic site, is needed to hydrolyze the substrate. The interplay between sites, how the substrate protrudes to, and how the hydrolysis products release from, the catalytic site remains in the focus of investigations. Here, we report that bee venom PLA2 has two additional interface binding modes and enzyme activity through constant switching between three different orientations (modes of binding), only one of which is responsible for substrate uptake from the bilayer. The finding was obtained independently using atomic force microscopy and molecular dynamics. Switching between modes has biological significance: modes are steps of the enzyme moving along the membrane, product release in biological milieu, and enzyme desorption from the bilayer surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610741 | PMC |
http://dx.doi.org/10.3390/toxins14100669 | DOI Listing |
mBio
January 2025
Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan.
The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization.
View Article and Find Full Text PDFChemMedChem
January 2025
Université Claude Bernard Lyon 1: Universite Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, FRANCE.
The serine/threonine protein kinase CK2, a tetramer composed of a regulatory dimer (CK2β2) bound to two catalytic subunits CK2α, is a well-established therapeutic target for various pathologies, including cancer and viral infections. Several types of CK2 inhibitors have been developed, including inhibitors that bind to the catalytic ATP-site, bivalent inhibitors that occupy both the CK2α ATP-site and the αD pocket, and inhibitors that target the CK2α/CK2β interface. Interestingly, the bivalent inhibitor AB668 shares a similar chemical structure with the interface inhibitor CCH507.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.
View Article and Find Full Text PDFMacromolecules
January 2025
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The environmental and economic challenges posed by the widespread use and disposal of plastics, particularly poly(ethylene terephthalate) (PET), require innovative solutions to mitigate their impact. Such mitigation begins with understanding physical properties of the polymer that could enable new recycling technologies. Although molecular simulations have provided valuable insights into PET interactions with various PET hydrolases, current nonpolarizable force fields neglect the electronic polarization effects inherent to PET interactions.
View Article and Find Full Text PDFTargeting the estrogen receptor (ER or ERα) through competitive antagonists, receptor downregulators, or estrogen synthesis inhibition remains the primary therapeutic strategy for luminal breast cancer. We have identified a novel mechanism of ER inhibition by targeting the critical interface between its DNA-binding domain (DBD) and ligand-binding domain (LBD). We demonstrate that mitoxantrone (MTO), a topoisomerase II inhibitor, binds at this previously unexplored DBD-LBD interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!