Motile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating. BB bending varies as environmental conditions change the ciliary waveform. Bending occurs where striated fibers (SFs) attach to BBs and mutants with short SFs that fail to connect to adjacent BBs exhibit abnormal BB bending, supporting a model in which SFs couple ciliary forces between BBs. Finally, loss of the BB stability protein Poc1, which helps interconnect BB triplet MTs, prevents the normal distributed BB and ciliary bending patterns. Collectively, BBs experience ciliary forces and manage mechanical coupling of these forces to their surrounding cellular architecture for normal ciliary beating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727800PMC
http://dx.doi.org/10.1091/mbc.E22-10-0468-TDOI Listing

Publication Analysis

Top Keywords

ciliary forces
16
ciliary
9
basal bodies
8
bending patterns
8
triplet mts
8
ciliary beating
8
bbs
6
forces
5
bending
5
bodies bend
4

Similar Publications

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Ciliary muscle traction during accommodation is able to induce optic nerve head deformation.

Eye (Lond)

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.

Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.

Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.

View Article and Find Full Text PDF

Human asthenozoospermia: Update on genetic causes, patient management, and clinical strategies.

Andrology

January 2025

Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France.

Background: In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle, which contains dynein motor proteins that provide the mechanical force for sperm propulsion and motility. Primary motility of the sperm cells is acquired during their transit through the epididymis and hyperactivated motility is acquired throughout the journey in the female genital tract by a process called capacitation.

View Article and Find Full Text PDF

Background: The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods.

View Article and Find Full Text PDF

Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!