Screening endoscopy has advanced to facilitate improvements in the detection and prognosis of gastric cancer. However, most early gastric cancers (EGCs) have subtle morphological or color features that are difficult to detect by white-light imaging (WLI); thus, even well-trained endoscopists can miss EGC when using this conventional endoscopic approach. This review summarizes the current and future status of linked color imaging (LCI), a new image-enhancing endoscopy (IEE) method, for gastric screening. LCI has been shown to produce bright images even at a distant view and provide excellent visibility of gastric cancer due to high color contrast relative to the surrounding tissue. LCI delineates EGC as orange-red and intestinal metaplasia as purple, regardless of a history of Helicobacter pylori (Hp) eradication, and contributes to the detection of superficial EGC. Moreover, LCI assists in the determination of Hp infection status, which is closely related to the risk of developing gastric cancer. Transnasal endoscopy (ultra-thin) using LCI is also useful for identifying gastric neoplastic lesions. Recently, several prospective studies have demonstrated that LCI has a higher detection ratio for gastric cancer than WLI. We believe that LCI should be used in routine upper gastrointestinal endoscopies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825522 | PMC |
http://dx.doi.org/10.1007/s00535-022-01934-z | DOI Listing |
Gastric Cancer
January 2025
Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
Background: Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment.
Methods: We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations.
Nano Lett
January 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Logical analysis of multiple-miRNA expression information and immediate output of diagnostic results facilitates early cancer detection. In this work, we constructed an isothermal molecular classifier capable of performing computations on multiple miRNAs and directly providing diagnosis results. First, we developed linear-after-the-exponential rolling circle amplification (LATE-RCA), a nearly linear isothermal amplification that does not destroy the original quantitative information about miRNAs.
View Article and Find Full Text PDFObjectives: Endoscopic full-thickness resection for gastric submucosal tumors is gradually gaining popularity, and secure and amenable closure is key to its success. This study aimed to compare the reopenable clip over-the-line method with the purse-string method for defect closure after endoscopic full-thickness resection for gastric submucosal tumors.
Methods: This historical control trial included 37 consecutive patients with 37 gastric submucosal tumors, who underwent endoscopic full-thickness resection between January 2021 and July 2024.
Cancer Manag Res
January 2025
Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
Introduction: Early diagnosis is crucial for improving the prognosis of patients with gastric cancer (GC). However, the currently used biomarkers for diagnosing GC have limited sensitivity and specificity. This study aimed to develop a novel diagnostic model based on miRNAs from glycosylated extracellular vesicles and evaluate its effectiveness in diagnosing gastric cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!