Resonant Grating-Enhanced Black Phosphorus Mid-Wave Infrared Photodetector.

Nano Lett

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States.

Published: November 2022

Black phosphorus (BP) has emerged as a promising materials system for mid-wave infrared photodetection because of its moderate bandgap, high carrier mobility, substrate compatibility, and bandgap tunability. However, its uniquely tunable bandgap can only be taken advantage of with thin layer thicknesses, which ultimately limits the optical absorption of a BP photodetector. This work demonstrates an absorption-boosting resonant metal-insulator-metal (MIM) metasurface grating integrated with a thin-film BP photodetector. We designed and fabricated different MIM gratings and characterized their spectral properties. Then, we show that an MIM structure increased room temperature responsivity from 12 to 77 mA W at 3.37 μm when integrated with a thin-film BP photodetector. Our results show that MIM structures simultaneously increase mid-wave infrared absorption and responsivity in a thin-film BP photodetector.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c03469DOI Listing

Publication Analysis

Top Keywords

mid-wave infrared
12
thin-film photodetector
12
black phosphorus
8
integrated thin-film
8
photodetector
5
resonant grating-enhanced
4
grating-enhanced black
4
phosphorus mid-wave
4
infrared photodetector
4
photodetector black
4

Similar Publications

Mid-infrared photodetection with 2D metal halide perovskites at ambient temperature.

Sci Adv

December 2024

Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.

Article Synopsis
  • Detection of mid-infrared (MIR) light is vital for various technologies like night vision and thermal imaging, yet traditional methods often require complex setups or cooling.
  • This study introduces a novel approach using two-dimensional metal halide perovskites (2D-MHPs) that enables high-sensitivity detection of MIR light at room temperature, with capabilities down to 1 nanowatt per square micrometer.
  • The technology achieves further sensitivity improvements using unique membrane structures and photonic strategies, covering a range of infrared wavelengths from 2 to 10.6 micrometers, paving the way for advancements in areas like environmental monitoring and molecular sensing.
View Article and Find Full Text PDF

With the rapid advancement of multi-band detection technologies, military and civilian equipment face an increasing risk of being detected, posing significant challenges to traditional single-band camouflage designs. To address this issue, this study presents an innovative multilayer structure using Ge, Cu, and ZnSe materials to achieve triple-band infrared camouflage, visible camouflage, and radiative cooling. The structure exhibits low emissivity in the short-wave infrared (SWIR, 1.

View Article and Find Full Text PDF

Research has shown that free-space laser communication systems may experience fewer outages due to atmospheric impairments such as haze, fog, clouds, and turbulence by operating at a longer wavelength in the mid-wave or long-wave infrared, if disadvantages such as lower-performance transceiver components may be overcome. Here we report a resonant cavity infrared detector (RCID) with 4.6-µm resonance wavelength that enables 20-dB larger link budget than has been reported previously for ∼ 5 Gb/s operation.

View Article and Find Full Text PDF

The cooled mid-wave infrared biomimetic compound eye camera has wide range of applications, such as industrial inspection, military project, and security. Due to the low resolution of individual eyes and the large field view of the imaging system, existing motion target enhancement and detection algorithms cannot effectively detect all potential targets. To address this issue, we propose an improved elementary motion detector model that combines a double-layer ON_OFF channel and a cross-type computational architecture, which is able to suppress a stationary background and enhance moving targets.

View Article and Find Full Text PDF

High-temperature furnaces and coal-fired boilers are widely employed in the petrochemical and metal-smelting sectors. Over time, the deterioration, corrosion, and wear of pipelines can lead to equipment malfunctions and safety incidents. Nevertheless, effective real-time monitoring of equipment conditions remains insufficient, primarily due to the interference caused by flames generated from fuel combustion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!