Black phosphorus (BP) has emerged as a promising materials system for mid-wave infrared photodetection because of its moderate bandgap, high carrier mobility, substrate compatibility, and bandgap tunability. However, its uniquely tunable bandgap can only be taken advantage of with thin layer thicknesses, which ultimately limits the optical absorption of a BP photodetector. This work demonstrates an absorption-boosting resonant metal-insulator-metal (MIM) metasurface grating integrated with a thin-film BP photodetector. We designed and fabricated different MIM gratings and characterized their spectral properties. Then, we show that an MIM structure increased room temperature responsivity from 12 to 77 mA W at 3.37 μm when integrated with a thin-film BP photodetector. Our results show that MIM structures simultaneously increase mid-wave infrared absorption and responsivity in a thin-film BP photodetector.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c03469 | DOI Listing |
Sci Adv
December 2024
Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.
With the rapid advancement of multi-band detection technologies, military and civilian equipment face an increasing risk of being detected, posing significant challenges to traditional single-band camouflage designs. To address this issue, this study presents an innovative multilayer structure using Ge, Cu, and ZnSe materials to achieve triple-band infrared camouflage, visible camouflage, and radiative cooling. The structure exhibits low emissivity in the short-wave infrared (SWIR, 1.
View Article and Find Full Text PDFResearch has shown that free-space laser communication systems may experience fewer outages due to atmospheric impairments such as haze, fog, clouds, and turbulence by operating at a longer wavelength in the mid-wave or long-wave infrared, if disadvantages such as lower-performance transceiver components may be overcome. Here we report a resonant cavity infrared detector (RCID) with 4.6-µm resonance wavelength that enables 20-dB larger link budget than has been reported previously for ∼ 5 Gb/s operation.
View Article and Find Full Text PDFSci Rep
November 2024
Shanghai University, Shanghai, 200444, China.
The cooled mid-wave infrared biomimetic compound eye camera has wide range of applications, such as industrial inspection, military project, and security. Due to the low resolution of individual eyes and the large field view of the imaging system, existing motion target enhancement and detection algorithms cannot effectively detect all potential targets. To address this issue, we propose an improved elementary motion detector model that combines a double-layer ON_OFF channel and a cross-type computational architecture, which is able to suppress a stationary background and enhance moving targets.
View Article and Find Full Text PDFSensors (Basel)
October 2024
College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471009, China.
High-temperature furnaces and coal-fired boilers are widely employed in the petrochemical and metal-smelting sectors. Over time, the deterioration, corrosion, and wear of pipelines can lead to equipment malfunctions and safety incidents. Nevertheless, effective real-time monitoring of equipment conditions remains insufficient, primarily due to the interference caused by flames generated from fuel combustion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!