Primary CNS lymphoma: update on molecular pathogenesis and therapy.

Leuk Lymphoma

Department of Medicine, University of California, San Francisco, CA, USA.

Published: January 2023

Primary central nervous system lymphoma (PCNSL) is a rare and aggressive form of extra-nodal non-Hodgkin lymphoma that as a brain tumor poses a unique set of challenges in diagnosis and management. With the advent of next-generation sequencing, we review updates in the understanding of its molecular and genomic pathogenesis. We also highlight key issues in management, with a focus on emerging technologies and new biological therapies including monoclonal antibodies, IMiDs, BTK inhibitors, PD-1 inhibitors, and CAR-T therapy. Integration of these approaches will likely enhance induction and consolidation strategies to suppress NF-κB activation and the anti-tumor immune response, while minimizing the often noxious effects of genotoxic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10428194.2022.2133541DOI Listing

Publication Analysis

Top Keywords

primary cns
4
cns lymphoma
4
lymphoma update
4
update molecular
4
molecular pathogenesis
4
pathogenesis therapy
4
therapy primary
4
primary central
4
central nervous
4
nervous system
4

Similar Publications

Objective: Intraventricular hemorrhage (IVH) is a serious condition with high mortality rates and poor functional outcome in survivors. Treatment includes external ventricular drains (EVDs), which are associated with several complications. This study reports the clinical outcome and complication rate in patients with primary IVH (pIVH) and secondary IVH treated with EVDs.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Cleveland Clinic, Cleveland, OH, USA.

Background: Apolipoprotein E (ApoE) is the primary cholesterol and lipid transporting apolipoprotein in the central nervous system (CNS) and is the greatest genetic risk factor for Alzheimer's Disease (AD). There are three main isoforms differing by single amino acid changes: ε3 is "neutral", ε4 is "risk" (Cys112Arg), and ε2 is "resilience" (Arg158Cys). Rare forms (Christchurch, Jacksonville) have also been proposed as resilience alleles, while an ε4-like allele (with Arg61Thr) is present in non-human primates without AD risk.

View Article and Find Full Text PDF

Background: High age is the biggest risk factor for Alzheimer's disease (AD). Approved drugs that slow down the aging process have the potential to be repurposed for the primary prevention of AD. The aim of our project was to use a reverse translational approach to identify such drug candidates in epidemiological data followed by validation in cell-based models and animal models of aging and AD.

View Article and Find Full Text PDF

This letter aims to provide valuable insights into broader evidence triangulation (i.e., a well-designed primary association analysis followed by elaborate approaches to control residual confounding effects from various design and modeling perspectives) for clarifying the association between air pollutants and health outcomes.

View Article and Find Full Text PDF

E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development.

Nat Commun

January 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!