A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Astaxanthin Protection against Neuronal Excitotoxicity via Glutamate Receptor Inhibition and Improvement of Mitochondrial Function. | LitMetric

Excitotoxicity is known to associate with neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis and Huntington's disease, as well as aging, stroke, trauma, ischemia and epilepsy. Excessive release of glutamate, overactivation of glutamate receptors, calcium overload, mitochondrial dysfunction and excessive reactive oxygen species (ROS) formation are a few of the suggested key mechanisms. Astaxanthin (AST), a carotenoid, is known to act as an antioxidant and protect neurons from excitotoxic injuries. However, the exact molecular mechanism of AST neuroprotection is not clear. Thus, in this study, we investigated the role of AST in neuroprotection in excitotoxicity. We utilized primary cortical neuronal culture and live cell fluorescence imaging for the study. Our results suggest that AST prevents neuronal death, reduces ROS formation and decreases the abnormal mitochondrial membrane depolarization induced by excitotoxic glutamate insult. Additionally, AST modulates intracellular calcium levels by inhibiting peak and irreversible secondary sustained calcium levels in neurons. Furthermore, AST regulates the ionotropic glutamate subtype receptors NMDA, AMPA, KA and mitochondrial calcium. Moreover, AST decreases NMDA and AMPA receptor protein expression levels, while KA remains unaffected. Overall, our results indicate that AST protects neurons from excitotoxic neuronal injury by regulating ionotropic glutamate receptors, cytosolic secondary calcium rise and mitochondrial calcium buffering. Hence, AST could be a promising therapeutic agent against excitotoxic insults in neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605357PMC
http://dx.doi.org/10.3390/md20100645DOI Listing

Publication Analysis

Top Keywords

ast
9
neurodegenerative diseases
8
glutamate receptors
8
ros formation
8
neurons excitotoxic
8
ast neuroprotection
8
calcium levels
8
ionotropic glutamate
8
nmda ampa
8
mitochondrial calcium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!