The marine environment is important yet generally underexplored. It contains new sources of functional constituents that can affect various pathways in food processing, storage, and fortification. Bioactive secondary metabolites produced by marine microorganisms may have significant potential applications for humans. Various components isolated from disparate marine microorganisms, including fungi, microalgae, bacteria, and myxomycetes, showed considerable biological effects, such as anticancer, antioxidant, antiviral, antibacterial, and neuroprotective activities. Growing studies are revealing that potential anticancer effects of marine agents could be achieved through the modulation of several organelles. Mitochondria are known organelles that influence growth, differentiation, and death of cells via influencing the biosynthetic, bioenergetic, and various signaling pathways related to oxidative stress and cellular metabolism. Consequently, mitochondria play an essential role in tumorigenesis and cancer treatments by adapting to alterations in environmental and cellular conditions. The growing interest in marine-derived anticancer agents, combined with the development and progression of novel technology in the extraction and cultures of marine life, led to revelations of new compounds with meaningful pharmacological applications. This is the first critical review on marine-derived anticancer agents that have the potential for targeting mitochondrial function during tumorigenesis. This study aims to provide promising strategies in cancer prevention and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604966PMC
http://dx.doi.org/10.3390/md20100625DOI Listing

Publication Analysis

Top Keywords

marine microorganisms
8
marine-derived anticancer
8
anticancer agents
8
marine
6
marine compounds
4
compounds mitochondria
4
mitochondria malignancy
4
malignancy therapeutic
4
therapeutic nexus
4
nexus marine
4

Similar Publications

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Unveiling triclosan biodegradation: Novel metabolic pathways, genomic insights, and global environmental adaptability of Pseudomonas sp. strain W03.

J Hazard Mater

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China. Electronic address:

The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) in microorganisms and their indications for the nitrogen/sulfur cycle in the East China Sea sediments.

J Hazard Mater

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China.

Antibiotic resistance genes (ARGs) are emerging environmental pollutants, posing an escalating threat to public health and environmental security worldwide. However, the relationship between ARGs and microbial communities in the environment, as well as their ecological effects on the microbe-mediated materials cycle remain unclear. In this study, we investigated the spatial distribution pattern, influence mechanism, relationship with microorganisms, and their effects on the elemental cycling of ARGs in East China Sea sediments.

View Article and Find Full Text PDF

Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.

View Article and Find Full Text PDF

Sonochemical Functionalization of SiO Nanoparticles with Citric Acid and Monoethanolamine and Its Remarkable Effect on Antibacterial Activity.

Materials (Basel)

January 2025

Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Departamento de Física Aplicada, Mérida 97310, Yucatán, Mexico.

Nanoparticles (NPs) are excellent antibacterial agents due to their ability to interact with microorganisms at the cellular level. However, their antimicrobial capacity can be limited by their tendency to agglomerate. Functionalizing NPs with suitable ligands improves their stability and dispersion in different media and enhances their antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!