Background: Radiomics extracts quantitative image features to identify biomarkers for characterizing disease. Our aim was to characterize the ability of radiomic features extracted from magnetic resonance (MR) imaging of the liver and spleen to detect cirrhosis by comparing features from patients with cirrhosis to those without cirrhosis.

Methods: This retrospective study compared MR-derived radiomic features between patients with cirrhosis undergoing hepatocellular carcinoma screening and patients without cirrhosis undergoing intraductal papillary mucinous neoplasm surveillance between 2015 and 2018 using the same imaging protocol. Secondary analyses stratified the cirrhosis cohort by liver disease severity using clinical compensation/decompensation and Model for End-Stage Liver Disease (MELD).

Results: Of 167 patients, 90 had cirrhosis with 68.9% compensated and median MELD 8. Combined liver and spleen radiomic features generated an AUC 0.94 for detecting cirrhosis, with shape and texture components contributing more than size. Discrimination of cirrhosis remained high after stratification by liver disease severity.

Conclusions: MR-based liver and spleen radiomic features had high accuracy in identifying cirrhosis, after stratification by clinical compensation/decompensation and MELD. Shape and texture features performed better than size features. These findings will inform radiomic-based applications for cirrhosis diagnosis and severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605113PMC
http://dx.doi.org/10.3390/jimaging8100277DOI Listing

Publication Analysis

Top Keywords

radiomic features
20
liver disease
16
liver spleen
16
patients cirrhosis
16
cirrhosis
10
features
9
liver
8
features patients
8
cirrhosis undergoing
8
clinical compensation/decompensation
8

Similar Publications

Background: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Materials And Methods: The model was developed using computed tomography (CT) images of pathologically proven renal tumors collected from a prospective cohort at a medical center between March 2016 and December 2020. A total of 561 renal tumors were included: 233 clear cell renal cell carcinomas (RCCs), 82 papillary RCCs, 74 chromophobe RCCs, and 172 angiomyolipomas.

View Article and Find Full Text PDF

Objectives: This study aimed to develop a multimodal radiopathomics model utilising preoperative ultrasound (US) and fine-needle aspiration cytology (FNAC) to predict large-number cervical lymph node metastasis (CLNM) in patients with clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC).

Materials And Methods: This multicentre retrospective study included patients with PTC between October 2017 and June 2024 across seven institutions. Patients were categorised based on the presence or absence of large-number CLNM in training, validation, and external testing cohorts.

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine the status of tertiary lymphoid structures (TLSs) using radiomic features in patients with invasive pulmonary adenocarcinoma (IA).

Methods: In this retrospective study, patients with IA from November 2015 to March 2024 were recruited from two independent centers (center 1, training and internal test data set; center 2, external test data set). TLS was divided into two groups according to hematoxylin-eosin staining.

View Article and Find Full Text PDF

Development and Validation of an Ultrasound-Based Clinical Radiomics Nomogram for Diagnosing Gouty Arthritis.

Ultrasound Med Biol

January 2025

Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Fuzhou University Affiliated Provincial Hospital, Department of Ultrasound, Fuzhou, Fujian Province, China. Electronic address:

Objective: This study aimed to develop and validate a diagnostic model for gouty arthritis by integrating ultrasonographic radiomic features with clinical parameters.

Methods: A total of 604 patients suspected of having gouty arthritis were enrolled and randomly divided into a training set (n = 483) and a validation set (n = 121) in a 4:1 ratio. Univariate and multivariate analyses were conducted on the clinical data to identify statistically significant clinical features for constructing an initial diagnostic model.

View Article and Find Full Text PDF

Background: Accurate preoperative prediction of vascular invasion in breast cancer is crucial for surgical planning and patient management. MRI radiomics has shown promise in enhancing diagnostic precision. This study aims to evaluate the effectiveness of integrating MRI radiomic features with clinical data using a deep learning approach to predict vascular invasion in breast cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!