Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite the success of hand-crafted features in computer visioning for many years, nowadays, this has been replaced by end-to-end learnable features that are extracted from deep convolutional neural networks (CNNs). Whilst CNNs can learn robust features directly from image pixels, they require large amounts of samples and extreme augmentations. On the contrary, hand-crafted features, like SIFT, exhibit several interesting properties as they can provide local rotation invariance. In this work, a novel scheme combining the strengths of SIFT descriptors with CNNs, namely SIFT-CNN, is presented. Given a single-channel image, one SIFT descriptor is computed for every pixel, and thus, every pixel is represented as an M-dimensional histogram, which ultimately results in an M-channel image. Thus, the SIFT image is generated from the SIFT descriptors for all the pixels in a single-channel image, while at the same time, the original spatial size is preserved. Next, a CNN is trained to utilize these M-channel images as inputs by operating directly on the multiscale SIFT images with the regular convolution processes. Since these images incorporate spatial relations between the histograms of the SIFT descriptors, the CNN is guided to learn features from local gradient information of images that otherwise can be neglected. In this manner, the SIFT-CNN implicitly acquires a local rotation invariance property, which is desired for problems where local areas within the image can be rotated without affecting the overall classification result of the respective image. Some of these problems refer to indirect immunofluorescence (IIF) cell image classification, ground-based all-sky image-cloud classification and human lip-reading classification. The results for the popular datasets related to the three different aforementioned problems indicate that the proposed SIFT-CNN can improve the performance and surpasses the corresponding CNNs trained directly on pixel values in various challenging tasks due to its robustness in local rotations. Our findings highlight the importance of the input image representation in the overall efficiency of a data-driven system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604913 | PMC |
http://dx.doi.org/10.3390/jimaging8100256 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!