[N···I···N] Type Halogen-Bonding-Driven Supramolecular Helical Polymers with Modulated Chirality.

ACS Nano

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.

Published: November 2022

AI Article Synopsis

  • - The study explores the [N···I···N] type halogen bond for creating supramolecular helical polymers using an Ag(I) coordination process, which leads to adjustable supramolecular chirality.
  • - Pyridine segments were linked to an asymmetric ferrocene structure to form 1D double helices and 2D helicates, which then organized into 3D porous frameworks with chiral channels and variable pore sizes.
  • - The research highlights how changes in solvent can alter the helicity of these polymers, influenced by the movement of the ferrocenyl core and the disruption of intramolecular hydrogen bonds, thus offering techniques for controlling helicity through ionic exchange and solvent conditions.

Article Abstract

The [N···I···N] type halogen bond has been utilized to synthesize supramolecular architectures, while the applications in constructing helical motifs and modulating supramolecular chirality have been unexplored so far. In this work, the [N···I···N] halogen bond was introduced to drive the formation of supramolecular helical polymers via a Ag(I) coordination intermediate, showing tunable supramolecular chirality. Pyridine segments were conjugated to the asymmetric ferrocene skeleton, which show "" and "" geometry depending on the N positions. Coordination with Ag(I) generated one-dimensional (1D) double helices and 2D helicates featured the [Ag(O)···I···Ag(O)] bond, which further stacked into 3D porous frameworks with chiral channels and adjustable pore sizes. Ionic exchange afforded 1D supramolecular helical polymers in solution phases driven by the [N···I···N] type halogen bonds, which was evidenced by the experimental results and density functional theory calculation. exclusively demonstrated tunable supramolecular chirality in the formation of coordinated and halogen bonded polymers. In addition, solvent change would further inverse the helicity of halogen bonded supramolecular helical polymers depending on the rotation of the ferrocenyl core whose "" and "" states were accompanied by the breakage of intramolecular hydrogen bonds. This work introduces a [N···I···N] type ionic halogen bond to prepare supramolecular helical polymers, providing multiple protocols in regulating helicity by ion exchange and solvent environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c08506DOI Listing

Publication Analysis

Top Keywords

supramolecular helical
20
helical polymers
20
[n···i···n] type
16
halogen bond
12
supramolecular chirality
12
supramolecular
9
type halogen
8
tunable supramolecular
8
halogen bonded
8
helical
6

Similar Publications

Supramolecular chirality has gained immense attention for great potential, in which the rational engineering strategy facilitates unique helical stacking/assembly, high chiroptical behavior, and prime biomedical activity. In this study, we reported a novel chiral organic donor-acceptor cocrystal based on asymmetrical components of benzo()naphtho(1,2-)thiophene (BNT) and 9-oxo-9H-indeno(1,2-)pyrazine-2,3-dicarbonitrile (DCAF) that exhibited red emission using a simple solution approach. During the self-assembly, a kinetically controlled growth of polar solvent or substrate induction led to the chiral packing and helical morphology twisted by the cooperation of electrostatic potential energy and chirality.

View Article and Find Full Text PDF

The intermolecular host-guest complexation of head-to-tail monomers consisting of cleft-shaped bisporphyrin and trinitrofluorenone units connected by a chiral binaphthyl linker was employed to construct helically twisted supramolecular polymers. Results from 1H NMR, diffusion-ordered NMR spectroscopy, and viscometry experiments revealed that the supramolecular polymerization of these monomers follows a ring-chain competition mechanism. The introduction of bulky substituents at the linker significantly suppressed the formation of macrocyclic oligomers, whereas smaller alkyl chains facilitated the formation of the cyclic form.

View Article and Find Full Text PDF

Chirality Evolution of Supramolecular Helices by Electron Transfer Assisted Secondary Nucleation.

Adv Sci (Weinh)

December 2024

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200230, P. R. China.

Chirality evolution is ubiquitous and important in nature, but achieving it in artificial systems is still challenging. Herein, the chirality evolution of supramolecular helices based on l-phenylalanine derivative (LPF) and naphthylamide derivate (NDIAPY) is achieved by the strategy of electron transfer (ET) assisted secondary nucleation. ET from LPF to NDIAPY can be triggered by 5 s UV irradiation on left-handed LPF-NDIAPY co-assemblies, leading to NDIAPY radical anions and partial disassembly of the helices.

View Article and Find Full Text PDF

Selective Self-Assembly of Supramolecular Helices and Macrocycles Directed by Halogen Bonding.

Chemistry

December 2024

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

In this study, several hydrogen-bonded arylamide foldamers (compounds 1-5) with the same degree of polymerization were designed and synthesized. The polyfluoroiodobenzene or iodoethynyl polyfluoroiodobenzene segment was modified as a halogen donor at the end of the monomer, and pyridine or pyridine oxynitride served as the corresponding halogen acceptor segment. The crystal structure of compound 1 indicates that the supramolecular double helices were constructed by stacking a P helix and an M helix in an antiparallel manner in the direction of intermolecular I⋅⋅⋅O-N halogen bonding.

View Article and Find Full Text PDF

The field of peptide based supramolecular biomaterials is fast evolving. These types of constructs have been shown to find applications in the fields of bioimaging, drug delivery and scaffolds for chemical reactions. However, the community typically focuses on the use of two specific classes of structured peptides: α-helices and β-sheets, clearly neglecting a unique peptide secondary structure: the polyproline helix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: