Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The lamina propria within the vocal fold (VF) is a complex multilayered tissue that increases in stiffness from the superficial to deep layer, where this characteristic is crucial for VF sound production. Tissue-engineered scaffolds designed for VF repair must mimic the biophysical nature of the native vocal fold and promote cell viability, cell spreading, and vibration with air flow. In this study, we present a unique trilayered, partially degradable hydrogel scaffold that mimics the multilayered structure of the VF lamina propria. Using thiol-norbornene photochemistry, trilayered hydrogel scaffolds were fabricated via layer-by-layer stacking with increasing polymer concentration from the top to middle to deep layer. Mechanical analysis confirmed that hydrogel modulus increased with increasing polymer concentration. Partially degradable hydrogels promoted high cell viability and cell spreading in three dimensions as assessed via live/dead and cytoskeleton staining, respectively. Importantly, partially degradable hydrogels maintained some degree of the three dimensional polymer network following protease exposure, while still enabling encapsulated cells to remodel their local environment via protease secretion. Finally, the trilayered hydrogel scaffold successfully vibrated and produced sound in proof-of-concept air flow studies. This work represents a critical first step toward the design of a multilayered, hydrogel scaffold for vocal fold tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.1c01149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!