In order to artificially regulate cell behaviors, intracellular polymerization as an emerging chemical technique has attracted much attention. Yet, it is still a challenge to achieve effective intracellular polymerization to conquer tumors in the complex cellular environment. Herein, this work develops a tumor-targeting and caspase-3 responsive nanoparticle composed of a diacetylene-containing lipidated peptide amphiphile and mitochondria-targeting photosensitizer (C3), which undergoes nanoparticle-to-nanofiber transformation and efficient in situ polymerization triggered by photodynamic treatment and activation of caspase-3. The locational nanofibers on the mitochondria membranes lead to mitochondrial reactive oxygen species (mtROS) burst and self-amplified circulation, offering persistent high oxidative stress to induce cell apoptosis. This study provides a strategy for greatly enhanced antitumor therapeutic efficacy through mtROS burst and self-amplified circulation induced by intracellular transformation and in situ polymerization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202204759 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!