A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mean kurtosis-Curve (MK-Curve) correction improves the test-retest reproducibility of diffusion kurtosis imaging at 3 T. | LitMetric

Diffusion kurtosis imaging (DKI) is applied to gain insights into the microstructural organization of brain tissues. However, the reproducibility of DKI outside brain white matter, particularly in combination with advanced estimation to remedy its noise sensitivity, remains poorly characterized. Therefore, in this study, we investigated the variability and reliability of DKI metrics while correcting implausible values with a fit method called mean kurtosis (MK)-Curve. A total of 10 volunteers (four women; age: 41.4 ± 9.6 years) were included and underwent two MRI examinations of the brain. The images were acquired on a clinical 3-T scanner and included a T1-weighted image and a diffusion sequence with multiple diffusion weightings suitable for DKI. Region of interest analysis of common kurtosis and tensor metrics derived with the MK-Curve DKI fit was performed, including intraclass correlation (ICC) and Bland-Altman (BA) plot statistics. A p value of less than 0.05 was considered statistically significant. The analyses showed good to excellent agreement of both kurtosis tensor- and diffusion tensor-derived MK-Curve-corrected metrics (ICC values: 0.77-0.98 and 0.87-0.98, respectively), with the exception of two DKI-derived metrics (axial kurtosis in the cortex: ICC = 0.68, and radial kurtosis in deep gray matter: ICC = 0.544). Non-MK-Curve-corrected kurtosis tensor-derived metrics ranged from 0.01 to 0.52 and diffusion tensor-derived metrics from 0.06 to 0.66, indicating poor to moderate reliability. No structural bias was observed in the BA plots for any of the diffusion metrics. In conclusion, MK-Curve-corrected DKI metrics of the human brain can be reliably acquired in white and gray matter at 3 T and DKI metrics have good to excellent agreement in a test-retest setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078439PMC
http://dx.doi.org/10.1002/nbm.4856DOI Listing

Publication Analysis

Top Keywords

dki metrics
12
metrics
9
kurtosis
8
diffusion kurtosis
8
kurtosis imaging
8
good excellent
8
excellent agreement
8
diffusion tensor-derived
8
gray matter
8
tensor-derived metrics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!