Background: Two decades ago, the fish-specific monoclonal antibody 4C4 was found to be highly reactive to zebrafish microglia, the macrophages of the central nervous system. This has resulted in 4C4 being widely used, in combination with available fluorescent transgenic reporters to identify and isolate microglia. However, the target protein of 4C4 remains unidentified, which represents a major caveat. In addition, whether the 4C4 expression pattern is strictly restricted to microglial cells in zebrafish has never been investigated.

Results: Having demonstrated that 4C4 is able to capture its native antigen from adult brain lysates, we used immunoprecipitation/mass-spectrometry, coupled to recombinant expression analyses, to identify its target. The cognate antigen was found to be a paralog of Galectin 3 binding protein (Lgals3bpb), known as MAC2-binding protein in mammals. Notably, 4C4 did not recognize other paralogs, demonstrating specificity. Moreover, our data show that Lgals3bpb expression, while ubiquitous in microglia, also identifies leukocytes in the periphery, including populations of gut and liver macrophages.

Conclusions: The 4C4 monoclonal antibody recognizes Lgals3bpb, a predicted highly glycosylated protein whose function in the microglial lineage is currently unknown. Identification of Lgals3bpb as a new pan-microglia marker will be fundamental in forthcoming studies using the zebrafish model.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.549DOI Listing

Publication Analysis

Top Keywords

monoclonal antibody
12
galectin binding
8
binding protein
8
4c4
8
4c4 monoclonal
8
protein
5
zebrafish
4
zebrafish galectin
4
protein target
4
target antigen
4

Similar Publications

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, Tc-HYNIC-mAb, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.

View Article and Find Full Text PDF

Patients diagnosed with metastatic basal cell carcinoma (BCC) have a poor prognosis. The current standard of care for adults with locally advanced or metastatic BCC who are not candidates for surgery or radiation therapy is treatment with hedgehog pathway inhibitors (HHIs). For patients who progress while on this therapy, further treatment options are limited.

View Article and Find Full Text PDF

Background: Denosumab represents a valuable treatment option for unresectable giant cell tumors of the bone (GCTBs). However, no standardized protocols exist determining the length of administration, with few studies having been published on patients who reached the end of treatment.

Aims: To analyze the outcomes of patients diagnosed with GCTB and who had finished single treatment with denosumab.

View Article and Find Full Text PDF

Benralizumab is an anti-IL-5 receptor alpha monoclonal antibody that induces the near-complete depletion of eosinophils. This study aimed to evaluate the long-term safety and effectiveness of benralizumab in patients with severe eosinophilic asthma (SEA) over an extended 48-month follow-up period, offering one of the longest real-world perspectives available. This was a single-arm, retrospective, observational, multicenter study involving 123 SEA patients treated with benralizumab at a dosage of 30 mg every 4 weeks for the first 3 doses and then every 8 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!