This study used a simple solution evaporation approach to make a bioinorganic titanium dioxide (Bi-TiO) photocatalyst for dye contaminant degradation. A variety of techniques, including -ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive -ray analysis (EDAX), and differential reflectance spectroscopy, had been employed to classify the structural and optical properties of the prepared bioinorganic photocatalyst (UV-DRS). Using simulated solar irradiation, the photocatalytic activity of the produced Bi-TiO nanoparticles was examined by detecting the degradation of a solution of methylene blue (MB) as a model dye molecule. The developed Bi-TiO photocatalyst demonstrates superior photocatalytic action than commercially available powder TiO, according to photo-degradation experiments. E. and S. bacterial strains were employed to assess the antibacterial activity of Bi-TiO nanoparticles. The most active molecules that gain antibacterial activity were examined in isolated or extracted components from the tulsi plant. The chosen compounds were docked with thymidylate kinase (TMPK), a potential therapeutic goal for the preparation of novel antibacterial drugs with the PDB ID of 4QGG. Five compounds, namely rosmarinic acid, vicenin-2, orientin, vitexin, and isoorientin, out of the 27 chosen compounds, showed a higher docking score and may aid in boosting antibacterial activity. The synthesized Bi-TiO nanoparticles produced antibacterial activity that was effective against Gram-positive bacteria. The nanomaterials that have been synthesized have a lot of potential in wastewater treatment and biomedical management technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588338PMC
http://dx.doi.org/10.1155/2022/1142727DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
16
bi-tio nanoparticles
12
bi-tio photocatalyst
8
chosen compounds
8
bi-tio
5
activity
5
antibacterial
5
molecular docking
4
docking green
4
green synthesis
4

Similar Publications

Introduction: Tackling the inertia of growing threat of antimicrobial resistance (AMR) requires changes in how antibiotics are prescribed and utilized. The monitoring of antimicrobial prescribing in hospitals is a critical component in optimizing antibiotic use. Point prevalence surveys (PPSs) enable the surveillance of antibiotic prescribing at the patient level in small hospitals that lack the resources to establish antimicrobial stewardship programs (ASP).

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institut de l'Audition/Institut Pasteur, Paris, France.

Background: Memory consolidation is an essential process for our everyday lives that is severely disrupted in Alzheimer's Disease (AD). Memories are initially encoded in the hippocampus before being consolidated in the neocortex by synaptic plasticity processes that depend on protein synthesis. However, how molecular pathways affect synaptic signalling during memory consolidation in health and disease is unclear.

View Article and Find Full Text PDF

Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!