Magnetic resonance imaging-guided focused ultrasound combined with microbubbles injected in the bloodstream (MRIgFUS) temporarily increases the permeability of the blood-brain barrier (BBB), which facilitates the entry of intravenously administered adeno-associated viruses (AAVs) from the blood to targeted brain areas. To date, the properties of the AAVs used for MRIgFUS delivery resulted in cell transduction limited to MRIgFUS-targeted sites. Considering future clinical applications, strategies are needed to deliver genes to multiple locations and large brain volumes while creating minimal BBB modulation. Here we combine MRIgFUS with a vector that has enhanced biodistribution following brain entry, AAV2-HBKO, to mediate broad gene delivery to targeted brain regions at levels with potential therapeutic relevance. Expression of a reporter gene was achieved in 13% and 21% of all neurons present in the striatum and thalamus, respectively, while targeting only 28% of the brain regions with MRIgFUS. Compared with AAV9, MRIgFUS-mediated delivery of AAV2-HBKO showed greater diffusion in the brain and a higher percentage of the neurons expressing the transgene. MRIgFUS AAV2-HBKO gene delivery to the brain has the potential to reach levels that are functionally and clinically relevant, and this even when using relatively low intravenous AAV dosages, compared with what is currently used in clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574578PMC
http://dx.doi.org/10.1016/j.omtm.2022.09.011DOI Listing

Publication Analysis

Top Keywords

gene delivery
12
brain regions
12
brain
8
large brain
8
targeted brain
8
delivery
5
mrigfus
5
engineered aav2-hbko
4
aav2-hbko promotes
4
promotes non-invasive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!