AI Article Synopsis

  • Sorghum biomass, both annual and perennial, is a crucial forage for ruminant animals, but it can produce toxic hydrogen cyanide (HCN) in high concentrations.
  • The study aimed to create a quick and cost-effective colorimetric assay to measure hydrogen cyanide potential (HCN-P) and to compare its accuracy with existing visual methods while exploring HCN-P variations in different sorghum lines.
  • Findings revealed that visual assessments significantly underestimated HCN-P, while the colorimetric method proved more accurate, but both methods showed low repeatability due to factors like year and growth stage impacting HCN-P levels.

Article Abstract

Both annual and perennial sorghum biomass serve as important forage for ruminant animals around the world. Unfortunately, sorghum can produce hydrogen cyanide (HCN), which, if occurring in high enough concentrations, can be toxic or lethal to animals that consume it. The objectives of this study were to develop a fast and inexpensive colorimetric assay to measure the hydrogen cyanide potential (HCN-P) as well as to compare this with existing visual assays while assessing the range of variation for HCN-P among perennial and annual sorghum biomass. The HCN-P of 100 sorghum lines derived from an interspecific hybridization program was determined over 2 years (establishment and regrowth) using both visual and colorimetric assays. Visual assessment underestimated the HCN-P and was less accurate than colorimetry. Repeatability for HCN-P across all sampling dates was functionally zero in the visual assessment and low for the colorimetric assay. This was mostly explained by the significant pedigree × year interaction effects and growth stage. Growth stage substantially influenced HCN-P, which should be considered when feeding animals on fresh forage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587379PMC
http://dx.doi.org/10.1002/pld3.448DOI Listing

Publication Analysis

Top Keywords

hydrogen cyanide
12
cyanide potential
8
perennial sorghum
8
sorghum biomass
8
colorimetric assay
8
visual assessment
8
growth stage
8
hcn-p
6
sorghum
5
genetic variation
4

Similar Publications

Drought stress severely damages wheat growth and photosynthesis, and plants at the grain-filling stage are the most sensitive to drought throughout the entire period of development. Exogenous spraying of sodium nitroprusside (SNP) can alleviate the damage to wheat caused by drought stress, but the mechanism regulating the proline pathway remains unknown. Two wheat cultivars, drought-sensitive Zhoumai 18 and drought-tolerant Zhengmai 1860, were used as materials when the plants were cultivated to the grain-filling stage.

View Article and Find Full Text PDF

A cytochrome repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in .

Appl Environ Microbiol

January 2025

Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.

View Article and Find Full Text PDF

Fully Inkjet-Printed Flexible Graphene-Prussian Blue Platform for Electrochemical Biosensing.

Biosensors (Basel)

January 2025

University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.

Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.

View Article and Find Full Text PDF

Neuromodulating Alkaloids from Millipede Defensive Secretions.

J Nat Prod

January 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Millipedes have long been known to produce structurally diverse chemical defenses, including hydrogen cyanide, terpenoid alkaloids, and oxidized aromatics. Although the hydrogen cyanide and oxidized aromatic producing millipedes have been well studied, less than 10% of the terpenoid alkaloid producers have been chemically investigated. Several previous studies have shown that alkaloids disorient predators, but their biochemical target is currently unknown.

View Article and Find Full Text PDF

Background: Ulcerative colitis (UC) is a chronic and recurrent digestive tract disease that can lead to significant morbidity and mortality. The pathogenesis of UC is intricately associated with the presence of reactive oxygen species (ROS). Prussian blue (PB), an inorganic nanozyme with potent antioxidant properties, has been extensively applied in the treatment of various inflammatory conditions and tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!