Impacts of orthophosphate-polyphosphate blends on the dissolution and transformation of lead (II) carbonate.

Sci Rep

Department of Civil and Resource Engineering, Centre for Water Resources Studies, Dalhousie University, 1360 Barrington St., Halifax, NS, B3H 4R2, Canada.

Published: October 2022

Orthophosphate-polyphosphate blends are commonly used to control lead release into drinking water, but little is known about how they interact with lead corrosion scale. Conventional corrosion control practice assumes that orthophosphate controls lead release by forming insoluble Pb-phosphate minerals, but this does not always occur, and under certain conditions, phosphate blends may increase lead release. Here, we used continuously-stirred tank reactors to compare orthophosphate-polyphosphate blends with orthophosphate on the basis of lead (II) carbonate dissolution and transformation at environmentally relevant phosphate concentrations. Three model polyphosphates-tripoly-, trimeta- and hexametaphosphate-were used. Hexametaphosphate was the strongest complexing agent (1.60-2.10 mol/mol), followed by tripolyphosphate and trimetaphosphate (1.00 and 0.07 mol/mol, respectively. At equivalent orthophosphate and polyphosphate concentrations (as P), orthophosphate-trimetaphosphate had minimal impact on lead release, while orthophosphate-tripolyphosphate increased dissolved lead. Orthophosphate-hexametaphosphate also increased dissolved lead, but only over a 24-h stagnation. Both orthophosphate-tripolyphosphate and orthophosphate-hexametaphosphate increased colloidal lead after 24-h. Increasing the concentrations of hexameta- and tripoly-phosphate increased dissolved lead release, while all three polyphosphates inhibited the formation of hydroxypyromorphite and reduced the phosphorus content of the resulting lead solids. We attributed the impacts of orthophosphate-polyphosphates to a combination of complexation, adsorption, colloidal dispersion, polyphosphate hydrolysis, and lead mineral precipitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596708PMC
http://dx.doi.org/10.1038/s41598-022-22683-2DOI Listing

Publication Analysis

Top Keywords

lead release
20
lead
13
orthophosphate-polyphosphate blends
12
increased dissolved
12
dissolved lead
12
dissolution transformation
8
lead carbonate
8
orthophosphate-hexametaphosphate increased
8
lead 24-h
8
release
5

Similar Publications

Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals.

Small Methods

December 2024

Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.

View Article and Find Full Text PDF

Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.

View Article and Find Full Text PDF

A stimuli-responsive drug delivery system based on konjac glucomannan, carboxymethyl chitosan and mesoporous polydopamine nanoparticles.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Electronic address:

A stimuli-responsive drug delivery system is developed for controlled delivery of curcumin (Cur) and chemo-photothermal therapy of breast cancer (BC). Cur is first loaded into mesoporous polydopamine nanoparticles (mPDA NPs) by π-π stacking, and then the Cur loaded mPDA NPs (mPDA NPs@Cur) are encapsulated in the hydrogels prepared through the crosslinking of oxidized konjac glucomannan (oxKGM) and carboxymethyl chitosan (CMCS). Owing to the pH-sensitivity of the hydrogels and the outstanding photothermal conversion capability of mPDA NPs, the release of Cur from the hydrogels can be greatly accelerated in acidic media upon near infrared (NIR) irradiation.

View Article and Find Full Text PDF

Introduction And Importance: Hydatid disease, caused by the Echinococcus parasite, is a significant health concern in endemic regions. While commonly found in the liver and lungs, breast involvement is rare. We present a case of a hydatid cyst in the breast of a 34-year-old woman from Ethiopia, initially suspected to be breast cancer.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!