The history of ferrites comes from many centuries and was fundamental in many fields. Initially, ferrites were extracted directly from nature, but in the last century, scientists learned to produce ferrites with different properties that gave origin to many advances in industrial and instrumental applications. More recently, the designed preparation of ferrites with nanometric size revealed remarkable characteristics. In the last years, different spinel ferrites were used as electroactive layers to build high-performance modified electrodes. In this review, it is presented a critical overview of the utilization of spinel ferrites (with a general formula MFeO where M = Mg, Ni, Co, Cu, Mn and Zn) to create differentiated voltammetric sensors. The association of these materials with graphene, glassy carbon, carbon nitride, ionic liquids, nanoparticles of noble metals, oxides of transition metals and other materials can produce notable synergic responses towards electrochemical activity. Some of these sensors can produce very sensitive signals and ample concentration ranges for compounds such hydrogen peroxide, glucose and bisphenol A, and present potential for many other applications. Along this review, all these aspects will be discussed and the main results are organized in tables, using as a base the metal associated with the ferrite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.340362 | DOI Listing |
J Mater Sci Mater Med
January 2025
Cyclotron Facility, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
This study aimed to synthesize MgFeLnO (where, Ln = Yb, Pr, Gd, and Nd) ferrite nanoparticles via the sol-gel process and investigate their structural, morphological, and magnetic properties for potential hyperthermia applications. X-ray diffraction analysis (XRD) confirmed the cubic spinel structure for all samples. Transmission electron microscopy (TEM) images revealed nanometer-scale dimensions and nearly spherical morphology.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15310, Greece. Electronic address:
In this study, a hydroxylamine (HA)-enhanced magnetic spinel catalyst CuFeO-activated peroxymonosulfate (PMS) system (CuFeO/PMS/HA) was constructed to degrade Sulfamethoxazole (SMX). Results from experiments and theoretical calculations indicated that active species generation mechanism involved the direct activation of PMS by HA, the redox cycles acceleration on the surface of CuFeO by HA, and the synergistic action of the low valence Fe and Cu species in CuFeO for PMS activation. The efficacy of other organic pollutants removal was further validated in bio-treated landfill leachate through removal performance and toxicity assessment.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran.
This paper presents the first-time synthesis of CoFe Co O nanoparticles (where x = 0.0, 0.1, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!