Objective: The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical studies by their conditions.
Materials And Methods: Our method first maps text entries in ClinicalTrials.gov's Condition field to standard condition concepts in the OMOP Common Data Model by using SNOMED CT as a reference ontology and using Usagi for concept normalization, followed by hierarchical traversal of the SNOMED ontology for concept expansion, ontology-driven condition categorization, and visualization. We compared the accuracy of this method to that of the MeSH-based method.
Results: We reviewed the 4,506 studies on Vivli.org categorized by our method. Condition terms of 4,501 (99.89%) studies were successfully mapped to SNOMED CT concepts, and with a minimum concept mapping score threshold, 4,428 (98.27%) studies were categorized into 31 predefined categories. When validating with manual categorization results on a random sample of 300 studies, our method achieved an estimated categorization accuracy of 95.7%, while the MeSH-based method had an accuracy of 85.0%.
Conclusion: We showed that categorizing clinical studies using their Condition terms with referencing to SNOMED CT achieved a better accuracy and coverage than using MeSH terms. The proposed ontology-driven condition categorization was useful to create accurate clinical study categorization that enables clinical researchers to aggregate evidence from a large number of clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2022.104235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!