Targeting endoplasmic reticulum (ER) stress presents a promising strategy in cancer therapy. We previously reported a series of 1,2,4-oxadiazole derivatives that induced the degradation of EGFR and c-Met which are implicated in tumorigenesis. Based on our previous SAR studies, herein, we report the discovery of EMD37, a novel 1,2,4-oxadiazole derivative, which demonstrated potent anticancer activity against NCI-60 cancer cell lines panel compared to its parent/lead compounds. Anti-proliferative assays revealed preferential cytotoxicity of EMD37 on cancer cells compared to normal cells. Delving deeper, we exploited unbiased genome-wide transcriptome profiling of EMD37-treated cancer cells. Gene Ontology and gene set enrichment analyses revealed that EMD37 promoted ER stress and unfolded protein response (UPR) machinery which was confirmed using RT-qPCR. Mining drug signature databases also confirmed the enrichment of the signature of canonical UPR inducers. Knocking down ER stress transcription factors compromised at least partly the anticancer activity of EMD37. Immunoblot analysis showed that EMD37 induced the accumulation of polyubiquitinated proteins and inhibited mTOR signaling. EMD37 induced G2/M cell cycle arrest and apoptosis of human cancer cells. Inhibiting apoptosis evidently abrogated the anticancer efficacy of EMD37. Altogether, this study introduces EMD37 as a novel ER inducer which warrants further investigation as a potentially relevant anti-cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2022.115316 | DOI Listing |
Cancer Chemother Pharmacol
December 2024
Departments of Pharmacology, Medicine Faculty, Sivas Cumhuriyet University, Sivas, Türkiye.
Purpose: Human epidermal growth factor-2 (HER-2) targeted drugs are used in only HER-2 overexpressed cancers. However, only a small portion of these cancer types are HER-2 overexpressed. In this study, we aimed to upregulate HER-2 receptors in MCF-7 breast cancer and HT-29 colon cancer cell cultures, which these cells are not HER-2 upregulated in natural status.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Faculty of Life and Natural Sciences, Department of Bioengineering, Abdullah Gül University, Sumer Campus, Kayseri, 38080, Turkey.
Background: Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by disorders in stem cell differentiation and excessive proliferation resulting in clonal expansion of dysfunctional cells called myeloid blasts. The combination of chemotherapeutic agents with natural product-based molecules is promising in the treatment of AML. In this study, we aim to investigate the anti-cancer effect of Rapamycin and Niacin combination on THP-1 and NB4 AML cell lines.
View Article and Find Full Text PDFChem Biodivers
December 2024
Shanghai University of Traditional Chinese Medicine, School of Traditional Chinese Medicine, #1200 Cailun road, Shanghai, CHINA.
Bisindole alkaloids constitute a significant class of natural compounds distinguished by their characteristic bisindole structure and renowned for their anticancer properties. Over the past six decades, researchers have isolated 425 microorganism-derived bisindole alkaloids (MDBAs). Among them, 187 MDBAs have demonstrated anticancer properties against various in vitro cancer cell lines, primarily by impeding the cell cycle, restraining cell proliferation, and inducing apoptosis and autophagy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institut Chimie radicalaire ICR-UMR 7273, Facult� de Saint jerome, avenue Escadrille-Normandie-Niemen, service 562, 13397, Marseille, FRANCE.
Efforts to understand radical stability have led to considerable progress in radical chemistry. In this article, we investigated a novel approach to enhancing the radical stability of carbon-centered radicals through space electron delocalization within [2,2]-paracyclophanes. Alkoxyamines possessing a paracyclophane scaffold exploit face-to-face π-π-interactions between the aromatic rings to effectively lower bond dissociation energy (BDE) for NO-C bond homolysis.
View Article and Find Full Text PDFChem Biodivers
December 2024
Chengdu University of Traditional Chinese Medicine, School of Ethnic Medicine, Liutai Avenue 1166, Wenjiang District, 611137, Chengdu, CHINA.
Gentiopicroside (GPS) is a bioactive iridoid glycoside isolated from Gentianaceae plants. In recent years, GPS has received increasing attention due to its multiple pharmacological activities. This review encapsulates the botanical origin, pharmacological activity, toxicity, and underlying mechanisms of GPS in the treatment of various diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!