Effect of dissolved organic matter on the bioavailability and toxicity of cadmium in zebrafish larvae: Determination based on toxicokinetic-toxicodynamic processes.

Water Res

Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.

Published: November 2022

The presence of dissolved organic matter (DOM) strongly influences the bioavailability of metals in aquatic environments; however, the association between the binding activities and the concentrations of DOM compositions is not well documented, leading to uncertainties in metal toxicity assessment. We creatively quantify the mitigation and acceleration effects of DOM compositions on cadmium (Cd) bioaccumulation and toxicity in zebrafish larvae using abiotic ligand (ABLs) and biotic ligand (BLs) in a toxicokinetic-toxicodynamic (TK-TD) model. The BL-TK-TD model could accurately predict the protective effect of fulvic acid while overestimating the complexing capacity of citric acid. The model also could successfully simulate the protective effects of native DOM in most cases from 32 natural water bodies in China. The observed LC50 values of Cd showed a peak effect for the native DOM fraction comprising hydrophilic acidic contents (3.55 ± 0.44 mg L  ) in natural water from 32 sites. The BL-TK-TD model provides practically useful information to identify the effect of different DOM compositions on metal bioavailability and toxicity in aquatic environments and guides future water management policies aimed at controlling aquatic heavy metal pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119272DOI Listing

Publication Analysis

Top Keywords

dom compositions
12
dissolved organic
8
organic matter
8
bioavailability toxicity
8
zebrafish larvae
8
aquatic environments
8
bl-tk-td model
8
native dom
8
natural water
8
dom
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!