Unlike fluorescence, room-temperature phosphorescence (RTP) has never been utilized to monitor the dynamic variation of polymer. In the present study, acrylate-vinylidene chloride (VDC) copolymers were doped with a good RTP molecule, N-hydroxyethyl 4-bromo-1,8-naphthalimide (HBN). During the maturation process, marked RTP-intensity enhancement of HBN was observed due to the crystallinity increase of copolymers, verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). For ensuring the more efficient RTP emission of HBN, copolymers with a higher content of crystallizable VDC segments and a more polar acrylate comonomer, i.e. methyl acrylate (MA) were preferred. According to the RTP characterizations, the following deductions could be obtained: (1) Maturation for 8-9 days at room temperature was needed for the copolymers with a high VDC content to ensure the complete crystallization; (2) Raising the maturation temperature to 50 and 70 °C not only accelerated the crystallization rate, but also increased the crystallinity of copolymers; (3) RTP method was more sensitive to the slight crystallinity variation than XRD and FTIR. Moreover, the dynamic maturation processes of acrylate-VDC copolymers could be also visually monitored through contacting with certain organic solvents that led to the emission color transition from orange to blue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.122016 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 1219 Zhongguan West Road, 315201, Ningbo, CHINA.
Many marine organisms feature sensitive sensory-perceptual systems to sense the surrounding environment and respond to disturbance with intense bioluminescence. However, it remains a great challenge to develop artificial materials that can sense external disturbance and simultaneously activate intense luminescence, although such materials are attractive for visual sensing and intelligent displays. Herein, we present a new class of bioinspired smart gels constructed by integrating hydrophilic polymeric networks, metastable supersaturated salt and fluorophores containing heterogenic atoms.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
Organic room-temperature phosphorescence (RTP) luminogens have showed significant potential in the fields of diagnostics, sensing, and information encryption. However, it is difficult to achieve high RTP yield (Φ) and long RTP lifetime simultaneously. By methyl substitution, positional isomerism, and host-guest doping, three new D-π-A type luminogens named as TBTDA, 2M-TBTDA, and 3M-TBTDA were designed and synthesized, whose RTP properties were tuned and optimized.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
Transparent wood with high transmittance and versatility has attracted great attention as an energy-saving building material. Many studies have focused on luminescent transparent wood, while the research on organic afterglow transparent wood is an interesting combination. Here, we use luminescent difluoroboron β-diketonate (BFbdk) compounds, methyl methacrylate (MMA), delignified wood, and initiators to prepare room-temperature phosphorescent transparent wood by thermal initiation polymerization.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
Organic red/near-infrared (NIR) room-temperature phosphorescence (RTP) holds significant potential for autofluorescence-free bioimaging and biosensing due to its prolonged persistent luminescence and exceptional penetrability. However, achieving activatable red/NIR organic RTP probes with tunable emission in aqueous solution remains a formidable challenge. Here we report on aqueous organic RTP probes with red/NIR phosphorescence intensity and lifetime amplification.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
A series of carbazolylpyridine ()-based 6/5/6 Pt(II) complexes featuring tetradentate ligands with nitrogen or oxygen atoms as bridging groups was designed and synthesized, and the bridging nitrogen atoms were derived from acridinyl (Ac), azaaceridine (AAc) and carbazole (Cz). Systematic experimental and theoretical studies reveal that the ligand structures have a significant effect on the electrochemical, photophysical and excited state properties of these complexes. Their oxidation processes mainly occur on the carbazole-Pt moieties, whereas the reduction processes typically occur on the electron-deficient pyridine (Py) moieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!