Bulk-type solid-state batteries (SSBs) composed of lithium thiophosphate superionic solid electrolytes (SEs) and high-capacity cathode active materials (CAMs) have recently attracted much attention for their potential application in next-generation electrochemical energy storage. However, compatibility issues between the key components in this kind of battery system are difficult to overcome. Here, we report on a protective cathode coating that strongly reduces the prevalence of detrimental side reactions between CAM and SE during battery operation. This is demonstrated using preformed HfO nanoparticles as a secondary particle coating for a layered Ni-rich oxide CAM, LiNiCoMnO (NCM85). The preparation of a stable dispersion of the HfO nanoparticles enabled the deposition of a uniform coating of thickness ≤11 nm. When incorporated into LiPSCl-based, pellet-stack SSBs, the coated NCM85 showed superior performance in terms of reversibility, cell capacity, longevity, and rate capability over its uncoated counterpart. The effectiveness of the protective coating in mitigating electro-chemo-mechanical degradation was investigated using a suite of physical and electrochemical characterization techniques. In addition, the adaptability to wet processing of the coated NCM85 is demonstrated in slurry-cast SSBs and liquid-electrolyte-based Li-ion cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c07314DOI Listing

Publication Analysis

Top Keywords

cathode coating
8
hfo nanoparticles
8
coated ncm85
8
coating
5
single- few-layer
4
few-layer nanoparticle
4
nanoparticle cathode
4
coating thiophosphate-based
4
thiophosphate-based all-solid-state
4
all-solid-state batteries
4

Similar Publications

The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.

View Article and Find Full Text PDF

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

Chiral Metal Coating to Enhance Water Electrolysis.

Energy Fuels

January 2025

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

Producing hydrogen through water splitting often faces challenges of overpotential, stability, and expensive catalysts, which limit its efficiency and hinder the advancement of hydrogen production technologies. Nickel foam and nickel meshes have emerged as promising materials for electrolyzer electrodes due to their high surface area and the ability to produce electrolyzers with a very small gap between the anode and cathode. This study presents a simple method for coating Ni-based electrodes with a chiral Ni-Au film, using electroplating, thus enhancing its efficiency dramatically.

View Article and Find Full Text PDF

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

LFP via Nanoscale Surface Reforming with a Tiny Minimal Amount of Conductivity-Enhancing Material.

Langmuir

January 2025

Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.

LiFePO (LFP) typically requires a conductive additive to improve its low ion and electron conductivity. In this study, we achieved significant enhancements in Li and electron mobility by applying a minimal amount of conductive material through a new coating process. The coin cell demonstrated an excellent capacity of 157.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!