The observed changes in the periarticular space may be caused by both mechanical action and biological reactions. Periprosthetic infections are the most common cause of loosening and destructive changes in the joints, however, the diagnosis of an aseptic reaction is not always fully obvious. Micromovements between the implant and the surrounding bone can cause remodeling of the bone trabeculae and migration of fibroblasts into the voids between the implant surface and the bone. In addition, repetitive stresses can induce fibroblast proliferation. On the other hand, the residues arising from the wear of implanted materials in the joints may play an important role in the process of loosening of prostheses - both aseptic and septic. Direct interactions between the released molecule and the macrophage surface are sufficient to activate osteoclastogenic signaling pathways. You cannot ignore allergic reactions to metals used in prostheses in patients undergoing arthroplasty. Demonstration of hypersensitivity to the components of dentures in some cases requires the use of appropriate material in order not to cause an inflammatory allergic reaction. Emerging treatment strategies using mesenchymal stem cells (MSCs) are aimed at improving the initial implant integration and preventing periprosthetic osteolysis. It should be emphasized, however, that the diagnosis of aseptic loosening in many clinical situations raises doubts, because it is at the root of everyone.
Download full-text PDF |
Source |
---|
Acta Orthop
January 2025
Department of Orthopaedics, Spaarne Gasthuis, Hoofddorp; Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Background And Purpose: Early migration of the uncemented cruciate-sacrificing rotating platform ATTUNE and Low Contact Stress (LCS) tibial components was classified as at-risk for aseptic loosening rates exceeding 6.5% at 15 years based on recent fixation-specific migration thresholds. In this secondary report of a randomized controlled trial (RCT) we aimed to evaluate whether the 5-year migration, inducible displacement, and the clinical outcome of the ATTUNE components were comparable to those of the LCS.
View Article and Find Full Text PDFArthroplast Today
February 2025
Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
Background: Improvements in cementless total hip arthroplasty have been directed at optimizing osseointegration of the femoral implant to reduce aseptic loosening rates. Stem design plays a critical role in the performance of these implants. Given the increase in new stem designs and the creation of an updated classification system, improved understanding of the outcomes of each stem type is warranted.
View Article and Find Full Text PDFJ Clin Med
January 2025
Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland.
Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.
View Article and Find Full Text PDFJ Exp Orthop
January 2025
Department of Orthopaedic Surgery and Traumatology Città della Salute e della Scienza Turin Italy.
Purpose: This systematic review and meta-analysis aimed to compare the clinical and radiological outcomes of patients undergoing revision total knee arthroplasty (rTKA) using uncemented press-fit stems (hybrid fixation) versus cemented stems (cemented fixation). It is also examined whether cemented fixation offers any superiority over hybrid fixation regarding implant survival, clinical function, imaging analysis and complication rates.
Methods: Following the PRISMA guidelines, a systematic review and meta-analysis were conducted on five databases (Pubmed, Scopus, Embase, Medline and Cochrane).
J Med Case Rep
January 2025
Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
Background: The Compress is designed to achieve bone formation and stability by applying pressure at the bone-implant interface, minimizing the likelihood of aseptic loosening, which is a complication of stem implants. Herein, we report two cases of implant failure using the Compress.
Case Presentation: Case 1 describes a 36 year-old Japanese man who underwent extraarticular tumor resection, Compress arthroplasty, and reconstruction with a gastrocnemius flap after preoperative chemotherapy for a secondary malignant giant cell tumor in the right distal femur.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!