Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991002 | PMC |
http://dx.doi.org/10.1093/hmg/ddac264 | DOI Listing |
Cureus
November 2024
Physical Medicine and Rehabilitation, St. John's National Academy of Health Sciences, Bengaluru, IND.
Emery-Dreifuss Muscular Dystrophy (EDMD) is a rare genetic disorder characterized by muscle weakness, joint contractures, and cardiac dysfunction. Within this spectrum, EDMD Type 2, attributed to a heterozygous missense variant in exon 9 of the LMNA gene, presents a distinctive clinical profile. This case report details the presentation and management of a teenage girl displaying neck, trunk, upper and lower limb weakness, Achilles tendon contracture, and lordosis.
View Article and Find Full Text PDFCureus
November 2024
Stroke Unit, Centro Hospitalar Tondela-Viseu, Viseu, PRT.
Emery-Dreifuss muscular dystrophy type 2 (EDMD2) is a rare autosomal dominant neuromuscular disorder caused by LMNA gene mutations and characterized by progressive skeletal muscle weakness and significant cardiac involvement. We report the case of a 45-year-old woman who presented with sudden-onset, left-sided hemiparesis and dysarthria. Initial imaging was unremarkable, and symptoms transiently improved, suggesting a transient ischemic attack.
View Article and Find Full Text PDFFront Genet
November 2024
Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
Introduction: Inherited lipodystrophies are a group of rare diseases defined by severe reduction in adipose tissue mass and classified as generalized or partial. We report a non-familial (sporadic) case of partial lipodystrophy caused by a novel genetic mechanism involving closely linked pathogenic variants in the gene.
Methods: A female adult with partial lipodystrophy and her parents were evaluated for gene variants across the exome under different mendelian inheritance models (autosomal dominant, recessive, compound heterozygous, and X-linked) to find pathogenic variants.
Neuromuscul Disord
November 2024
Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy. Electronic address:
Mol Syndromol
December 2024
Research team in genomics and molecular epidemiology of genetic diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!