Movement of LHCII between two photosystems has been assumed to be similarly controlled by the redox state of the plastoquinone pool (PQ-pool) in plants and green algae. Here we show that the redox state of the PQ-pool of Chlamydomonas reinhardtii can be determined with HPLC and use this method to compare the light state in C. reinhardtii with the PQ-pool redox state in a number of conditions. The PQ-pool was at least moderately reduced under illumination with all tested types of visible light and oxidation was achieved only with aerobic dark treatment or with far-red light. Although dark incubations and white light forms with spectral distribution favoring one photosystem affected the redox state of PQ-pool differently, they induced similar Stt7-dependent state transitions. Thus, under illumination the dynamics of the PQ-pool and its connection with light state appears more complicated in C. reinhardtii than in plants. We suggest this to stem from the larger number of LHC-units and from less different absorption profiles of the photosystems in C. reinhardtii than in plants. The data demonstrate that the two different control mechanisms required to fulfill the dual function of state transitions in C. reinhardtii in photoprotection and in balancing light utilization are activated via different means.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792418 | PMC |
http://dx.doi.org/10.1007/s11120-022-00970-3 | DOI Listing |
Mol Med
January 2025
The First People's Hospital of Lin'an District, No. 360, Yikang Street, Jinnan Subdistrict, Lin'an District, Hangzhou, Zhejiang, 311300, China.
Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.
View Article and Find Full Text PDFCommun Biol
January 2025
Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
Oxygen consumption by oceanic microbes can predict respiration (CO production) but requires an assumed respiratory quotient (RQ; ΔO/ΔCO). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.
View Article and Find Full Text PDFBiochimie
January 2025
Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), 96010-900 RS, Brazil. Electronic address:
Oxidative stress arises from an imbalance between reactive species (RS) production and the antioxidant defense, increasing the brain susceptibility to neurodegenerative and psychiatric diseases. Besides, changes in the expression or activity of neurotransmitter metabolism enzymes, such as monoamine oxidases (MAO), are also associated with mental disorders, including depression. Considering this, antioxidant and MAO-A activity inhibitory potential of six 2,3-chalcogenodihydrobenzofurans (2,3-DHBF) was investigated through in vitro and in silico tests.
View Article and Find Full Text PDFElife
January 2025
Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Junior Research Group Synthetic Microbiology, Jena, Germany.
Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene , which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes.
View Article and Find Full Text PDFActa Naturae
January 2024
St Petersburg University, St. Petersburg, 199034 Russian Federation.
Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!