Unmanned aerial vehicles (UAVs) have recently been increasingly popular in various areas, fields, and applications. Military, disaster management, rescue operations, public services, agriculture, and various other areas are examples. As a result, UAV path planning is concerned with determining the optimal path from the source to the destination while avoiding collisions with lowering the cost of time, energy, and other resources. This review aims to assort academic studies on the path planning optimization in UAV using meta-heuristic algorithms, summarize the results of each optimization algorithm, and extend the understanding of the current state of the path planning in UAV in the meta-heuristic optimization field. For this purpose, we implemented a broad, automated search using Boolean and snowballing searching methods to find academic works on path planning in UAVs. Studies and papers have been distinguished, and the following information was obtained and aggregated from each article: authors, publication's year, the journal name or the conference name, proposed algorithms, the aim of the study, the outcome, and the quality of each study. According to the findings, the meta-heuristic algorithm is a standard optimization method for tackling single and multi-objective problems. Besides, the findings show that meta-heuristic algorithms have a great compact on the path planning optimization in UAVs, and there is good progress in this field. However, the problem still exists mainly in complex and dynamic environments, on battlefields, in rescue missions, mobile obstacles, and with multiple UAVs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-022-10590-yDOI Listing

Publication Analysis

Top Keywords

path planning
24
planning optimization
12
meta-heuristic algorithms
12
unmanned aerial
8
aerial vehicles
8
uav meta-heuristic
8
findings meta-heuristic
8
path
7
optimization
6
meta-heuristic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!