A high-throughput approach to detecting, quantifying, and characterizing microplastics (MPs) by shape, size, and polymer type using laser direct infrared (LDIR) spectroscopy in surface water samples is demonstrated. Three urban creeks were sampled for their MP content near Cincinnati, OH. A simple Fenton reaction was used to oxidize the surface water samples, and the water samples were filtered onto a gold-coated polyester membrane. Infrared (IR) analysis for polymer identification was conducted, with recoveries of 88.3% ± 1.2%. This method was able to quantify MPs down to a diameter of 20 µm, a size comparable to that of MPs quantified by other techniques such as Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. A shape-classifying algorithm was designed using the aspect ratio values of particles to categorize MPs as fibers, fibrous fragments, fragments, spherical fragments, or spheres. Cut-off values were identified from measurements of known sphere, fragment, and fibrous particles. About half of all environmental samples were classified as fragments while the other shapes accounted for the other half. A cut-off hit quality index (HQI) value of 0.7 was used to classify known and unidentified particles based on spectral matches to a reference library. Center for Marine Debris Research Polymer Kit 1.0 standards were analyzed by LDIR and compared to the given FTIR spectra by HQI, showing that LDIR obtains similar identifications as FTIR analysis. The simplicity and automation of the LDIR allows for quick, reproducible particle analysis, making LDIR attractive for high-throughput analysis of MPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805365 | PMC |
http://dx.doi.org/10.1007/s00216-022-04371-2 | DOI Listing |
J Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, 756000, People's Republic of China.
A novel coumarin-based fluorescent probe LY was designed and synthesized in this work. LY could selectively recognize Cu via fluorescence quenching at 522 nm in a DMSO/HO solution. The recognition process experienced minimal interference from other common cations.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
Groundwater arsenic (As), contamination is a significant issue worldwide including China and Pakistan, particularly in canal command areas. In this study, 131 groundwater samples were collected, and three machine learning models [Random Forest (RF), Logistic Regression (LR), and Artificial Neural Network (ANN)] were employed to predict As concentration. Descriptive statistics helped to conclude that all of the samples were inside the permitted limit of WHO for pH, Ca, Mg, Turbidity, Cl, K, Na, SO, NO, F and beyond limit of WHO for EC, HCO, TDS, and As.
View Article and Find Full Text PDFMicroscopy (Oxf)
December 2024
Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
It is challenging to image structures in liquids for electron microscopy (EM); thus, low-temperature imaging has been developed, initially for aqueous systems. Organic liquids (OLs) are widely used as dispersants, although their cryogenic EM (cryo-EM) imaging is less common than that of aqueous systems. This is because the basic properties (e.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Water Resource and Ecosystems, IHE Delft Institute for Water Education, Westvest 7, Delft, NH, Netherlands.
Groundwater is often used directly by the public in several river basins of India. Hence, this study was carried out with the objective of assessing the quality of groundwater in the Amaravathi basin, India, using a multiple indices approach. Groundwater quality data from 96 monitoring wells were obtained from the Central Groundwater Board and used in this study.
View Article and Find Full Text PDFClin Oral Investig
January 2025
University Hospital for Conservative Dentistry and Periodontology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
Objectives: To compare the plaque reducing efficacy of oil pulling with sesame oil compared to distilled water in a randomized, controlled, examiner-blinded parallel group study.
Materials And Methods: Forty probands without advanced periodontal disease of the University Hospital for Restorative Dentistry and Periodontology, Medical University of Innsbruck (Austria) were randomized allocated to test- (sesame oil) or control group (distilled water) and asked to pull daily in the morning for eight weeks with their allotted fluid for 15 min. Rustogi Modified Navy Plaque Index (RMNPI) and gingival bleeding index were assessed at baseline and after four and eight weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!