Participation of signaling proteins in sperm hyperactivation.

Syst Biol Reprod Med

Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.

Published: October 2022

Sperm hyperactivation is described as a fast whip movement of the flagellum, an irregular trajectory, and an asymmetrically flagellum bend. This motility pattern is achieved during the passage of the sperm along the female genital tract. It helps the spermatozoa to cross through different viscous ambient fluids to finally reach the oocyte. Important signaling proteins are located in the sperm head and flagellum, and they all play an important role in the cascade that controls the sperm hyperactivation. The presence of HCO modulates the activity of the soluble adenylyl cyclase (sAC), leading to the production of cAMP. In turn, cAMP modulates the sperm-specific Na/H exchanger (sNHE) and the t-complex protein 11 (TCP11) which play an essential role on the signaling pathway (cAMP/PKA and tyrosine phosphorylation) and sperm hypermotility. sNHE, cystic fibrosis transmembrane conductance regulator (CFTR), and voltage-gated proton channel (Hv) mainly contribute to the regulation of the intracellular pH (pHi) during capacitation. HCO entrance and the removal of H from the cytoplasm induces the alkalization of pHi, and this change will contribute to the activation of the cation channel of sperm (CatSper). Recently, it was described the participation on sperm motility and the regulation of calcium channels of an autophagy-related protein, the microtubule-associated protein light chain 3 (LC3). This review gathers important literature about the essential roles of sAC, sNHE, CFTR, Hv, and CatSper in the acquisition of sperm hyperactivation, and provides an integrated overview of recently described roles of TCP11 and LC3 on the sperm signaling pathway. Additionally, we provide insight into the infertility induced by the dysfunction of these critical proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19396368.2022.2122761DOI Listing

Publication Analysis

Top Keywords

sperm hyperactivation
16
sperm
10
signaling proteins
8
signaling pathway
8
participation signaling
4
proteins sperm
4
hyperactivation
4
hyperactivation sperm
4
hyperactivation described
4
described fast
4

Similar Publications

Human asthenozoospermia: Update on genetic causes, patient management, and clinical strategies.

Andrology

January 2025

Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France.

Background: In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle, which contains dynein motor proteins that provide the mechanical force for sperm propulsion and motility. Primary motility of the sperm cells is acquired during their transit through the epididymis and hyperactivated motility is acquired throughout the journey in the female genital tract by a process called capacitation.

View Article and Find Full Text PDF

Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive.

View Article and Find Full Text PDF

Oxidation of thiol groups in membrane proteins inhibits the fertilization ability and motility of sperm by suppressing calcium influx.

Biol Reprod

December 2024

Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.

The redox state of thiol groups derived from cysteine residues in proteins regulates cellular functions. Changes in the redox state of thiol groups in the epididymis are involved in sperm maturation. Furthermore, the redox state of thiol groups in proteins changes during the process of sperm capacitation.

View Article and Find Full Text PDF

Objective: Mammalian sperm acquire fertilizing ability in the female reproductive tract and develop hyperactivated motility, which is indispensable for male fertility. Hyperactivated motility is initiated by Ca2+ influx via the sperm-specific ion channel, CatSper. CATSPER1, a CatSper pore subunit, possesses a long N-terminal intracellular domain and its degradation correlates with unsuccessful sperm migration in the female tract.

View Article and Find Full Text PDF
Article Synopsis
  • The CatSper channel is crucial for sperm fertility as it regulates calcium signaling necessary for sperm movement.
  • CATSPERε, a specific subunit of this channel, is vital for assembling the entire CatSper complex and enabling sperm hyperactivation.
  • Mice lacking CATSPERε are sterile due to defective sperm, highlighting the importance of this subunit in fertility and potential therapeutic targets.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!